OpenPortal m

OpenPortal Whitepaper & Design Document

7-06-99
Brad Neuberg
Paolo de Dios



What |s OpenPortal ?

OpenPortal is an open-source Java-server platform under the GNU Public License (GPL) and LGPL that
makes a new generation of web sites possible. These new websites are open, growable, transportable,
changeable, and interoperable. OpenPortals all share the following characteristics-

The 10 Char acteristics of an OpenPortal

1
2.
3

S

7.
8.

0.

Everyoneisauser.

Everything is changeable and editable.

Userscan add, create, and modify sites extensively into unknown new
directions.

An OpenPortal isasopen or closed asyou like—and everywherein between.
All theinteresting stuff happens when opennessistaken to the point of
Craziness.

Websites become discussions, and discussions become websites.
Thewebsite supportsits own growth.

The walls between web sites are broken down, and OpenPortals can
interoper ate.

If they don't want to play, wrap 'em as components.

10. You may not even know you're on an OpenPortal (because you're not).

These OpenPortal Ten Commandments are explained below.



1. Everyoneisa user.

Traditionally, most websites divide the people who make, design, and use awebsite into seperate
categories:

A Programmer creates the programs that run on a server. These programs help to dynamically generate the
site.

A Graphic Designer creates the html templates that help generate the site.

An Owner lays claim to the server and sets the direction of the site.

A Content Creator creates the actual stuff that is on the site.

An Editor decides which of the content created by the Content Creators is worth keeping.

An Administrator takes care of the site on asystemslevel.

An last, but not least, isthe poor User who is left to consume the website made by his superiors.
Programmers, Graphic Designers, Owners, Content Creators, Editors, and Administrators all do their work

directly on the server side using special toolsthat are seperate from the website itself, and are usually
located in the same physical |ocation:

Programmer Graphic Designer

Design / Owner

Tool

Compiler|

Money &
Equipment

Word
Processor

-——

Web

Web Server Content Creator
Browser

User

Special
Tools

Shell
Access

* Editor

Administrator

Exhibit A - How Folks Get their Jobs Done - People on the server-side use special tools to make and maintain the website, while users use a
browser to access the website.



uss consume the website through their browsers— yummy. What happens if a user wishes to somehow
become a Programmer, Graphic Designer, Owner, Content Creator, Editor, or Administrator? Sorry, too
bad — stay in your place, behind the browser!

In the last two years portal s have attempted to change this paradigm abit with a feature known as
personalization, which usually boils down to the following three features:

change your background color!

personalize things with this predefined cookie cutter!

here's some generic content from our partners!

Portals are too afraid to truly allow personalization, to truly understand what this means, because it would
involve aredefinition of what web sites are. Hence OpenPortal's appearance.

In OpenPortal everybody starts out as a User behind the browser — there is no one on the server side!

I
 —
Web

User Browser

Web

User Browser

Web
Browser

In
—_—
In
Web
User

OpenPortal Server
User

User Browser

Web
Browser

Then, in various ways, users gain Nametagsthat give them extra privileges to become the roles they wish
and desire:



. IN

—>
Programaner

User
—
Web
User

Browser

Web
Browser

In
N
Web
User Browser penPortal Server
N
I
N
Editar
Web Halla d aman

Browser
User Guest

Web
Browser
User

Any user, whether they are in Bangladesh or Bridgeport, can potentially gain any role. This isthe power of
making everyone a user.

@eﬂbIam an... \
LOpenPor’[al

How do these OpenPortal usersfulfill their job roles?



2. Everything is changeable and editable.

Once you begin to assume that anyone anywhere in the world can potentially lead an OpenPortal website
through a browser, you must provide some sort of browser-based tools to help these people.

A first responsein providing these toolsisto build specialized html web pages, dynamic html web pages,
or java applets that act on the web site, just like how in the old model graphic designers and programmers

used design tools and compilers seperate from aweb server to modify aweb site:

» | Design separate from Web Word separate from Web
Tool and acts on page Processor and acts on page

Graphic Content Creator Word
Design Processor
Tool (ex. (ex.
Dreamwe Microsoft
Word)

The Old Model

Graphic Designer

IN
Another N
— Web separatefrom web Web separate frol Aw;ger
Browser and acts on —_— —Scparate from,
page Browser and acts on page
Special web —
. : age that pecial we
Graphic Designer Foimicks Content Creator page that
WYSIWYG mimicks
i i WYSIWYG
il farean, | ceson oo il 1w an.

processor

Eraphe Demigrar Conbem Creahor

Mimicking the Old Model on the Web

This approach is known as an application-centric approach. Thisisthe PC approach— the politically
correct Personal Compulter.

OpenPortal isdifferent. It takesanod from technologies like OpenDoc that put the focus on documents
and not on applications. In OpenPortal everything is adocument. These documents are known as weblets
because they live on the web. There are weblets that represent every type of document you can imagine:
Business Card weblets, Article weblets, Comment weblets, Toolbar weblets, Poll weblets, and even weblets

that represent the User and the Siteitself:

Business Card Weblet Edif

BaseSystem, Inc.

1080 Breadurey W36
Hlewr Ytk WY 106128

e bassnrie com Crmate AMpintsin Shpes

Erad MNesherg
Wack Presadent of Techisodopy

el bewd hastsyprien cam

ok T13-853-2003

Business Card Webl et



| Asticle Wellet Vs Edit Clons Dialaty

Dlow Page  Mew Cotegary

& Crmated by Brad Haubarg vis grige sl 2 commanti; 1 dane
T Tuandivg, June 28, 2R Last updated on Man 12/14(1998. Creatsd on 12731938

Home : General Topics : The 10 Characteristics of an OpenPortal
& breakdown of the major characteristics all OpenPortals share

The 10 Characteristics of an OpenPortal

By Brad Neubery

1. Everyone is a user.

1, Everythimg iz changeabbe and editable,

3. Users can add, covate, and modify sites extensively into wnboown new directions,
4, An OpenFortal is as open or chesed a5 you like - and evorywher inhetween,

5, All the imteresting siufl happens when openness is taken e the poini of craziness.,
. Wehsides become discussians, and discussions hecoms wehsiies,

7. The website supporis growih,
B, The webzite is dbe srganization.
9. The walls hetween web sites are broken down, and Opentertals cam interoperate,

L), If they dom "t wand fe play, wrap "em as compomenis.

Other pages in this categony: Gensral Topics
The 10 Charactaristics of an OpenPortal
I am 3 fan of the &40L-Netscape margsr

Derived warks created witih clone
The Bonng Hewcomsr - Disnsynfosesk's Go Networks

Article Weblet

Poll Wehlat [ e
My fwertie weblet bs the |
© Buginess Card Weblet

C Poll Webdet

© Teoolbar Weblet

' Ermall Wehlet

' Groupe Wehlst

Mt | [ Results | Palls |
.I:'um.m.lnt!'i‘lﬂ Votes: 18374

Poll Weblet

Not only does awebl et encapsulate a document type, it also includesall the tools necessary to modify and
change that weblet. Y ou can imagine the weblet including a miniature editor customized just for that
weblet. Thisisthe heart of the document-centric approach — the focusis on documents, not applications.
Applications are ancillary to documents and embedded within the documents themselves. For example, the
diagram below shows how a Business Card weblet includes atiny editor inside of it that can be invoked by
clicking on an Edit hyperlink:



User clicks on the Edit hyperlink,
bringing up the small edit form that
allows the Business Card to be
changad

Business Card Welilet

BaseSystem, Inc.

T840 Bk W34
W ocks, HY 10028
v g oprtam com Create Moy San

Brad Meuherg

e

Husiness Card Welblot

Hame: |Brad Meuberg

Crganezation: I<b}Easa<f‘h>Sysmm. Inc:

Address: {2840 Broadwey #336<brMeaw rork, Ny 10025<krw

Shogan: [Create. Mairtain. Share

Fole: [L"lna Fresident of Technology

Emai |brad@basesystiem.com User changes the orgarization
nd hitsortite Save

Phone-Humber:  [212-853-3502

and slogan a
button

.

_—

Changes to the Business Card
weblet are shown

Note that even while OpenPortal provides a new way to change weblets and web pages through browsers, it
does not necessarily foreclose the old way of doing things. We Embrace and Extend those aswell ;)
OpenPortal caches all web pages, weblets, and templates as flat text files on the server-side, directly
mirroring the OpenPortal web-site into the filesystem, so that it can be administered by perl scripts, text
editors, graphic design tools, etc. by those lucky-enough to be on the server-side.



3. Userscan add, create, and modify sites extensively into unknown new
directions.

Remember that OpenPortal is not just about editing specific parts of awebsite—it is about letting users
build awebsite into entirely new directions unforeseen by the original web-site creator. To support this,
weblets need to be more than just editable — they need to be addable, removable, and createable by users
across al of an OpenPortal site. Easy Command Language (ECL) isthetool that makesthis possible. ECL
isasimple command-language that allows a user to directly issue commands to an OpenPortal server. ECL
not only lets power-users manipulate weblets, but it also provides the tools necessary to build user-
interfaces that can manipulate weblets for beginning users. In future versions of OpenPortal ECL will be
hidden to everyone but the power-user by more sophisticated dynamic html and dynamic html graphical
user-interfaces.

The concept behind ECL isthat userstell an OpenPortal server what they would like to do in plain English:

Edit thisweblet

Display my business card
Add new article

Login

Display all members

Delete thisweblet

There are twoways in which ECL commands are issued by the user, either by clicking on ECL hyperlinks
or by issuing ECL commandsin the edit form of a weblet.

Issuing ECL Commands by Clicking on Hyperlinks

ECL commands are “hidden” behind OpenPortal hyperlinks:

Dusplay Brad Heuberg's business card

so that when a user clicks on the hyperlink the associated ECL command is sent to the OpenPortal server:

Diszlay Brad Meubere's basiness card Sends BECL Comimand
hﬁﬁ'ﬂa whien clicked
i ¥ Sraddl 5 BSINESS
o Cxge ey
OpenPortal Zerver

BaseSveiemn, ne,

Returns Brad Meuberg's
business card
_‘




Issuing ECL Commands in the Edit Form of a Weblet

ECL commands can also be entered by the user into edit forms by surrounding the ECL command with
double brackets:

Normal Page Weblet

Page

Nama: IEimd'a Page
s oSS * ECL command
-4 E=1 UI1LNEss ar =] et ] Ld
iy MRLLodd pusiness Card Beblecl surrounded by double

brackets

[[add Business Card Weblet]]

4

or by surrounding the ECL command with arrows:



Normal Page Weblet

Page

S iEim,d's Fage
Page ST ECL command
& —>add EBuziness Card Weblet<—2
i e L5 surrounded by arrows

->add Business Card \Weblet<-

o

Double-bracketsinstructs the server to run an ECL command right when the Save button is hit. Inthe
example above:

Normal Page Weblet

Page :

i [Bral:ﬁ s Page

Page [[add Business Card Weblet]] =
contents:

H

when the user clicks the Save button, the add Business Card Weblet ECL command will be run by the
OpenPortal server and the results of the command will be embedded in the web page, which inthiscaseisa
new business card webl et:



Normal Page Weblet View Edit Clone Delete

Mew Page Hew Category Newd Business Card x| Wbl

Sample Page

Created by Brad Meuberg., no dones.
Today: Tuesday. June 28, Last updated on Mon 12/14/19%8, Created on
1999 12/9/1998,

Business Card Wehblet Edit

BaseSystem, Inc.

2840 Browbesyr 8336
Hewr Yok, WY 10025

e basesyslan com Creste . Mzintain. Shame.

Brad Newherg

Wice President of Tecknology

Derived works created with clone

Surrounding the ECL command with arrows instructs OpenPortal to automagically hyperlink this command
when the web page is returned and to run the ECL command when the user clicksonit. Inthe example
from above:



Normal Page Weblet

Page
Brad's Fage
Marme: I hthhal
Page --radd Business Card Weblec<—- =]
Contents:

=

when the user clicks on the Save button, OpenPortal does not execute the ECL command but automagically
hyperlinksit instead:



Hormal Page Weblet iew Edit Elone Delete ‘

Business Card 7]

Created by Brad Neuberg. no dones.
Today: Tuesday. June 28, 1999 Last updated on Mon 12/14/1998. Created on 12/9/1996.

add Business Card Weblet

Derived works created with clone

when the user clicks on the hyperlink then the ECL command is run:



Normal Page Weblet View Edit Clone Delete

Page  NewCstegory Hew |Business Card =] i

‘Sample Page
Created by Brad Neuberg, no canes.
Today: Tuesday, June 28, 1939 Last updated on Mon 12/14/1998, Creatad on 12/9/1998,

add Business Card Weblet

Business Card Wehlet Edi

BaseSystem, Inc.

2840 Browdbesy M336
Hewr York, HY 10025

Ay hacesystan (om Ceale, Mairtain, Shame.

Brad Neuberg

Derived works created with clone

With these two forms of ECL users can build an entire user interface:



Normal Page Wehblet

FPage
sample Fage
Mame: l P 9
Page Hy Business Contacts: =
Contents: -->Add Business Card Here<--

Ny To-Do Lists:
-=2>A0d To-Do Weblaet Har&d--

Save

When saved this page |ooks as follows:



Normal Page Wehlet Wiewr Edit Clene Delete

| MewPage MewCategary New |Business Card x| Wbl

Sample Page
Created by Brad Meuberg. no cones.
Today: Tuesday. Junae 28, Last updated on Mon 12/14/19%8, Created on
| 1999 12/9/1998,

My Business Contacts:
Add Business Card Here

My To-Do Lists:
Add To-Dio Weblet Here

Derived works created with clone

When these links are clicked onthen the ECL command is performed. For example, if the user clickson
the link Add Business Card Weblet Here, a new business card webl et is added:



m
-5
=

Clane CDelete

Hormal Page Weblet e

Sample Page
Created by Brad Heuberg. no dones.

Today: Tuezday, June 2B, Last updated on Mon 12/14/1995. Created on
1999 12/9/1998,

My Business Contacts:
Add Business Card Here

Business Card Weblet Edit

BaseSystem, Inc.

2840 Browdwey K336
e Yok, HY 10025

e hsenyrslern Comn Create. Mzintzin. Shame.

Brad Neuherg

Vice Presiders of Tedmology

My To-Do Lists:
Add To-Do Weblet Here

Derived works created with clone

It should be mentioned at this point that weblets don’t play alone —they are usually grouped together in a
weblet container. A weblet container isjust aweblet that supports adding, removing, and creating new
webletsinside of it. A good example of aweblet container isthe Normal Page Weblet Container. Thisisa
weblet that can hold other weblets and displays them on asingle web page:



m
=}
=

Clone Delete

Normal Page Weblet View

These are the weblets on this page:
Business Card Weblet Edit

BaseSystem, Inc.

2840 Broadway #336
New York, NY 10025
www.basesystem.com

Create. Maintain. Share.

| [BradNeuberg

N G

Business Card Weblet Edit

The OpenPortal Project

WWW.O| ortal .or Where websites become
discussions, and discussions
become websites.

| |pedodeDios

I

Poll Weblet Edit

My favoriteweblet isthe

e
e
E
e

C Groups Webl et

Business Card Webl et
Poll Weblet
Toolbar Webl et

Email Weblet

Vote
[ Results | Palls ]

Comments217 | Votes18274




Each of the webletsin the Normal Page Weblet Container can still be edited:

These are the weblets on this page:

Business Card Weblet

Name: I Brad Neuberg

Organization: <b>Base</b>System, Inc.

|
Address: I 2840 Broadway #336<br>New York, NY
Slogan: I Create. Maintain. Share.
Role: I Vice President of Technology
Email: I brad@basesystem.com
|

Phone-Number: 212-853-3602

Save |

Business Card Weblet Edit

The OpenPortal Project

WWW.OJ ortal .or Where websites become
discussions, and discussions
become websites.

| |pedlodeDios

Poll Weblet Edit

My favorite weblet isthe
E Business Card Weblet
Poll Weblet

Toolbar Webl et

Email Weblet

Oonon0on

Groups Webl et




What happensif you hit the edit Easy Command Language hyperlink for the Normal Page Weblet? You
would get the following:

Normal Page Wehblet

Page

Hams |Sump|e Fage

Page [embed weblet 1] =
Contents: [embed weblet 2]

[embed weblet 3]

Save

Each of the embed statements refers to each of the weblet's embedded in the weblet container. If you remove one of the
embed statements:

Normal Page Wehlet

Page

KA ]Sampla Page

Fage [embed weblet 1] =
Contents: [enbed weblet 3]

Save



and hit save, then the corresponding embedded webl et will be removed from the weblet container:

Normal Page Weblet View Edit Clone Delete

New Page New Category New j Weblet

Sample Page

Created by Brad Neuberg. no clones.

:Today: Tuesday, June 28, 1999 Last updated on Mon 12/14/1998. Created on 12/9/1998.
These are the weblets on this page:
Business Card Weblet Edit
BaseSystem, Inc.
2840 Broadway #336
New York, NY 10025
www.basesystem.com

Create. Maintain. Share.

| [BradNeuberg

I G

Poll Weblet Edit

My favorite weblet isthe
E Business Card Weblet
Poll Weblet

Toolbar Webl et

Email Weblet

OonOonon

Groups Weblet
Vote

[ Results |Palls ]
Comments217 | Votes18274

The ECL embed command can also be used to embed webl ets that have a name that are on different pages
on the OpenPortal site. Some weblets can have aname, which isusually in thetitle bar of the weblet:




m
[=%
-

Normal Page Weblet View

o Category Mewl Buysiness Card =] Wbl

Sample Page
Weblet Name
Created by Brad Heuberg. no cones.
Today: Tuesday, June 28, Last updated on Mon 1271471998, Craated on
19939 iz/9f1998.
1l. Business Carg Edit gi?n’:igbg;?ﬂs
- — - ' Weblet Name
BaseSystem, Inc.
2840 Broadwey #5356
Fewr Yok, MY 10025

vrenar s syehanm o Create. Maintzin. Shame.

Brad MNewberg
Wice President of Teckmo logy

amail: brud §hasesystem. com

wvolce: 212-853-3460

Derived works created with clone

Thisweblet nameis usually set through the edit form. A weblet does not necessarily need to have a name;
it will usually be given adefault oneif noneisgiven. Using thisweblet name one can embed weblets from
al over the site on any OpenPortal page by using the embed command. Aswill be explained in section 4,
"An OpenPortal isas open or closed as you like — and everywhere in between,” all OpenPortal pageslivein
Siteswhich can have Areas. An OpenPortal can have multiple Sites, such asthe "Linux Site", the
"Windows 2000 Site", etc., and in each Site there can be multiple Areas, such as"/Linux Site/Main Area",
"/Linux Site/News Area’, "/Windows 2000 Site/Main Area’, etc. When using the embed command, the

full name of the webl et to be embedded must be given. For example, let's say that on the"Linux Site" there
isan Areanamed "Repository Area’. In this Repository Areacould be aweblet named " Standard
Toolbar":



: Area Wehlet View Edit Clone Delete

HewPage New Category M Business Card :I Wikl
Linux Site : Repesitory Area

Crasted by Brad Nauberg, no clones.
Today: Tuesday, June 28, Last updated on Mon 12/14/1998, Crested on
1939 1z2f9/1998,

Standard Toolbar - Taciber webiat Edit

Main Area
Today's Mews
Linuzx Commentary

Derived works created with clone

From anywherein the Linux Site this Standard Toolbar could be embedded onto any OpenPortal page by
using the embed command:



Mormal Page Wehlet

FPage Name: |Sume Fage

Page Contents: [embed "/Linux Site/Repository =]

irea/3tandard Toolbar™]

Welcome to thi= page!

Save

The embed command is considered the default ECL command, so in the text field above the word embed
doesn't even have to be entered:

["/Linux Site/ Repository Areal/ Standard Tool bar"]

When the save button is hit the Standard Toolbar is embedded in the page:



Normal Page Weblet Miewr Edit Clone Delete

Mew Page Mew Category New|Business Card x| m-

Some Page
Crested by Brad Meubera. no cdones,

Today: Tussday, Juna 28, Last updated on Momn 12/14/1998, Created on
1999 12791998

Standard Toolbar - 7ooiber webizt Edit

Nlan Area

Today's Hews
Linux Commentary

Welcome to this pagel

Derived works created with clone

The embed command is very useful for embedding items that are used throughout an OpenPortal site, such
as the Standard Toolbar from the example above, or for referring to items when typing in aweblet, such as
referring to your business card or a seperate discussion that has occured.

Automatic hyperlinks to named weblets can also be created using the ECL arrows--> and <--. One simply
surrounds the weblet name with these arrows and OpenPortal will automatically create a hyperlink to this
weblet:



Normal Page Wehlet

Page Name! Sample Page

Page Contents: ==>"/Linux Site/Repository Area/Standard ﬂ
Toolhar*<--

When the save button is hit the following is returned:



Hormal Page Wehlet Ve Edit Elone

oy tee] Business Card x| Wi

Created by Brad Neuberg., no clones.
Today: Tussday, June 28, Last updated on Mon 12/14/1998, Created on
1993 ' 12/9/15998,

{Linuz StefRepostory Area/Standard Toolbar

Derived works created with clone

If aweblet isreferenced that does not exist, the tiny wordscreate this are added and hyperlinked to the end
of the unknown weblet:



Normal Page Weblet View Edit Clone Delete

New Page New Category Newd Business Card ¥ Webls

‘Sample Page
Created by Brad Meuberg. no cones.
Today: Tuasday, Juna 28, Last updated on Man 12/14/1998, Created an
L2390 1279/1998,

Malke sure to see Some Unlenown Weblet mese this

Derived works created with clone

When the create this hyperlink is clicked on the user istaken to a page that allows them to pick out what
kind of weblet to make:

Once thiswebl et has been defined, the original page will display the link without a create this hyperlink:



Normal Page Weblet Yiew Edit Clone Delete

eed Business Card ] Wbk

Created by Brad Neuberd., no dones.
Today: Tuasday, Juna 28, Last updated on Mon 12/14/1598, Created on
1999 : i 12/9/1998,

Make sure to see Some Unknown Weblet

Derived works created with clone




4. An OpenPortal isasopen or closed asyou like- & everywherein between.

It isan extremely powerful notion to allow usersto completely reconfigure and extend asite. With this
ability comesthe fear that any redefinition of power can cause. OpenPortal does not force you to have an
open site and to make everything changeable — though it certainly encourages you to. Instead OpenPortal
has an extensive permissioning system based on the English abilities of Easy Command Language, which
allows people to run an OpenPortal as open or as closed as they wish.

OpenPortal allows usersto create Sites. One OpenPortal server can have several Sites, al below atop-
level root. Each Site can also have multiple Areas benesath it.

Top-Level
Root
Site Site
Area Area Area

Each Site and Area can define general policies on what kind of Easy Command Language a user can
execute when within them. Within each Site Users can have Roles, such as Editor, Owner, Member, and
Guest. Within each Areaand Site a user's Roles can be used to either restrict or enable ECL commands.

Site Area Role/User ECL Command
Linux Site Main Area Owner Can edit all

The table above shows how one can restrict or allow ECL commands based on Roles, Users, Areas, and
Sites. In this example any user who has the Role of Owner in the Main Area of the Linux Site can edit
everything. The next table shows more examples of restricting commands based on roles and users. Inthe
first line the user Paolo de Diosis given permission to edit everything ("Can edit al") in the Discussion
Area. Inthe second line adefault security setting is set for everyone ("Default for Everyone") so that
everyone cannot edit anything. Permissions are enforced in the order they are given, so that permissions
higher in the table below are enforced and can over-ride lower permissions.

Site Area Role/User ECL Command
Linux Site Discussion Area Paolo de Dios Canddeteadl
Linux Site Main Area Default for Everyone Cannot edit all

Sites and Areas can hold other weblet containers, but cannot hold nested Sites or Areas. They can also set
policies on whether children Areas, weblet containers, and weblets can over-ride the security settings of
their parents. For example, in the table below anyone who has the role of being Owner in every Areain the
Linux Site can change children permissions of sub-Areas or weblet containers, while the Default for
Everyoneis set so that the everyone cannot set Area permissions but can set aweblet container's
permissionsin the Discussion Area.

Site Area Role/User ECL Command

Linux Site All Owner Can set area permissions
Linux Site All Default for Every one Cannot set area permissions
Linux Site Discussion Area Default for Everyone Can set weblet container

permissions



Weblets and weblet containers can also have their own security policies attached to themselves.
A web-based user interface is used to set these policiesfor each Area, Site, weblet, or weblet container.

They all have the same general form, an example is shown below for setting the properties of a Site named
Linux Site:

Limux Site Security

set sacurily for area ‘33

=8t sacurity for sda '
In Ithis site _‘ﬂ |Evur'_rune E |r|:an _:J creale webleis thal ovesride parent's seltings _*:I
Md' Dther. JALESERAL ive ECL Cosmand

Securtty settings for this ste m order of power:

In tha Discussion Araa Editors can clone all weblets =]
In the Main Area Guests cannot delete all weblels

In this site Membears can adit "My Business Card”

T

=

Linux Sie User Holes

By defanlt, all users are | Owhies EI

Eales:

Chrigtoper Tse is an Editor
Julio Hershberg 5 an Eddor
Jane Paland 15 3 Marmber
Bryan Pitiz ig & Mernber =]

Romove | Sww | Add] _Change |

Eirad Neuberg is an Chmar j

FEirad Meuberg ﬂ i£ mil}ﬂncr _:!

The user interface has two sections; atop section in which security settings are set by creating the
appropriate phrase from pull-down menus, and a bottom settings where all the security settings for the site
arelisted. Thereisalso abottom section for assigning users different Rolesfor Sites. For example, in the
screenshot above the top section has the following security phrase spelled out from the pull-down menus:

In this site Everyone can set security for area



These new phrases can be added to the site by hitting the "Add" button, and the new phrase will be added
after whatever phrase was highlighted in the lower section.

The pull downs for the top-down section are as follows:

Linux Site Securtty

sei sacuriy for anea ﬂ
set secunty for site

In 1'."|'. it 3 |_ el 3 [TB crisate wiblels that ovemde parents sefings ﬂ
Everone B
Mo one cannot O | Adbemative Webleal Command
the Main Area lust Bde T
thix Ciacussion Area
the Membars Aréa Owiniais
E ditors
Membears
Guests
Brad Maubarg
Faolo de Dios =

In the upper right portion of the user interface isascrolling list that has all possible ECL commands
enumerated (i.e. "set security for area”, "set security for site", etc.). The ECL commands which can have
security set on them are as follows, with descriptions where appropriate.

set security for area

set security for site
These two commands give someone permission to set the security properties for an areaor asite.

If someoneis allowed to set the security, aform similar to the ones above isreturned.

create weblets that override parent's settings
Thisgivesauser permission to create awebl et that can override the weblet's parent security,
possibly allowing more permissive or restrictive use of the weblet then the parent would provide.
For example, using this setting would allow someone to create an editable Article weblet in an
areawhere nothing can be edited.

assign all roles

assign Omer role

assign Editor role

assign Menber role

assign Guest role
These five commands gives a user the power to assign rolesto other usersin an areaor asite. For
example, auser could be given the power to assign the Member role to anew user.

other (fill in command in box bel ow)
This selection isused for typing in ECL commands that have not been enumerated. Thisis
commonly used for setting ECL commands on individual weblets (i.e. edit "My Business Card").

do everything with all weblets
Thisgivesauser freereign over all webletsin an area, though this does not give them permission
to change asite or area's security settings or to assign roles.

edit all weblets

view all weblets

delete all weblets

clone all weblets
These ECL commands give auser permission to run edit, view, delete, or clone commands on any
webl et.

set security for all weblets



Thisallows a user to change the security properties of aweblet; note that this does not include the
ability to change the security permissions of the area or site.

create all weblets
create Business Card Wbl et
create Normal Page Wbl et
create Article Wbl et
create Tool bar Wbl et
Every available weblet is enumerated and a 'create’ option is put into the list. Thisallowsoneto
restrict the creation of certain types of weblets to certain users.
do everything with all Business Card Wbl ets
edit all Business Card Wbl ets
view all Business Card Wbl ets
del ete all Business Card Wbl ets
clone all Business Card Wbl ets
nmove all Business Card Wbl ets
set security for all Business Card Wbl ets
do everything with all Nornal Page Wbl ets
edit all Normal Page Wbl ets
view all Normal Page Wbl ets
del ete all Normal Page Wbl ets
clone all Normal Page Weblets
move all Normal Page Weblets
set security for all Normal Page Wbl ets

For each type of weblet all possible commands that can be run on this weblet is enumerated.
Above are two example enumerations for Business Card Weblets and Normal Page Weblets.

The bottom portion of the security form shows all the security settings for the site. Three buttons can be
used to manipulate these: 'Remove, 'Save', 'Add’, and ‘Change’. Hitting Remove removes a highlighted
security setting from both the client and server. Hitting Save saves amodified ECL command and all
modifications. Hitting Add causesthe ECL command that has been specified in the top-portion of the user
interface to be inserted into the bottom portion. Hitting Change loads the selected ECL command into the
top-portion.

Thereis also abottom section for assgning users different Roles for Sites. The form to do thisislocated at
the bottom of the Site form above. The default role for all users can be set with thisform. Rolesare listed
in alist-box, and can be Removed, Saved, Added, and Changed by clicking on the appropriate buttons and
selecting from the lower pull-downs (i.e. "Brad Neuberg" isan "Owner").



The form for setting an area's security policies|ooks similar to the site security form:

Discussion Area Secu H‘f

=61 sacuty for araa H
creale weblels (hal cveride pasent's sellmgs
In  the Discussion Area | Everyone =] [ean =] Jotner ill m command i box below) =
MI Giher: [RIEETRAT IVe ECL Command

Secunty setangs for thes area in order of powwer:

I the Discusssan Anea Editars can clane all weblets =]
In the Discussion Amea Evaryone can view all weblets

=
Remove | Save | Change |

All that is different isthat the Areais already restricted and the ECL command 'set security for site' is
removed upper right box. Also, Areas cannot have their own assigned roles; roles are only assigned from

Sites.

Weblet Containers also have their own security properties form:

Wehlet Contalner Security

créale wiblels thal ovemde thes conlainer's sellmgs g
ciher ({ill in command in box belos)

H e =3 =

In this container |Everyane

MI Othar Ihltcrnu.tn-l: ECL Command

Securgy settmgs for this area m order of power

In thiz weblet conlainer Editors can clone all weblats =]
In {his wablet conlaingr Everyane can view all webles

|
Ramave | Sava| _Chanps |

The upper-right ECL command box includes all the same commands as the Site box, without the 'set

security for area and 'set security for site' commands.

Weblets have the simplest security settings:



Business Cand Wehblet Sacurity

da awerpthing to this veanlet :i

In the Dhscussion Area |E‘“3'rfl"3'“*EI j i“" ﬂ ::1-I:v:-’-::rb::| ,ﬂ

]

Security settmgs for ts weblet in order of powes:

In the Discussion Area Editors can clona this weblet =]

-]

Renvove I Sml Change

The upper-right ECL command box has the following commands:

do everything to this webl et
edit this webl et

view this webl et

del ete this webl et

clone this webl et

set security for this weblet

Aninteresting feature that balances being too open with being too closed is the clone feature that some
weblets support. It issometimes desirable to have some webl ets be uneditable, such as a research paper
that has been posted on an OpenPortal. However, it might also be useful to alow othersto clone this paper
and then let them make changes only on the clone, but not on the original:



Ariicke Wohiei W : Clars #

Tha clone is
now editable

) Articla Wbl yorer @ Elai

MewBage  New Calagors

- cewatad by Boad Agularg wis pegingl. 1 don
Wodays Tuspday, dene 78 Lart updstad on Man 131471959, Crestad on
FEST) AR AR

H T H i

Hime
& breakdown of the major charactarstics akf OpenPortats shara,

The 10 Characteristics of an OpenPortal

By Brad Mewhorg

1. Breryvar is & wet.

2. Ereiwthing i vhangrable and editile

3, Usrs cas il create, arsd madily siies exiemsively inte unkiirwn aew e,
4. An DprnPartal i us open er clased as you like - and ererynhers inbeeeen,

5. All the isteresting 5 fs when sperness i taken to (e peind of craciness.
. Pebaiics b s i amdl dis imns become wrkad

7. The websiie sugperts growth.

H. Thr wrbaiir is the arpanicuion.

92

The walls btinren web sites are beekhen donn, uad OpeaFortaly can inlervperate.
10 I thee ™€ s  lasy, Wi e i Compenenis.

User makes a
clone

e Page Do Catagon

Crastesd by frad Haubars wis griging. 1 cans.
Toduy: Temrdwy, Juma 28, LAdt wd et an Mo LarEAVIR9E Crasted ar
EE 1zraiisae

fum:wrﬁmnﬂhu.ﬂ.nmmm

|A breakdown of the magr charactenstcs all OpanPartals share.

Clone of The 10 Characteristics of an
OpenPortal

iy Erad Heuharg

I Forryume is 2 user.

2 Ferryihing i= clamgeable and edliable,

3 llmere ram add, creade, and madify slies sxienchely fnis snkarss e dbrectians.
A An CpeaPorial is as apea ar clased 3 yau ke - sad reerpelers inbetarea.

A AH dhe Amieresting seulf hagpeas when speaness bs takew s the paint of craziaess,
. Wehzies became disrussivas, and disrussivns became wehsies,

. The webisise pupparis growih.

B The weliside is dhe arganbiadian,

9. The walls hedwnen weh clies 2e brakea down, sod Openlarals can mieaoperais,

10, I ey don’d waas iv play, wrap “rm an componess,




5. All theinteresting stuff happens when opennessistaken to the point of craziness.

While OpenPortal can be used to build old, boring closed sites, all the fun starts to happen when you push
and edge out into crazy openness. Thisiswhen the proverbial sh*t hitsthe fan. Wouldn't it be interesting
to make a closed site using OpenPortal but allow anyone to clone that website and change it to make their
own? Imagine the interesting results that would occur as the mutations of your website went from one
clone, to two clones, to four clones, to sixteen, growing exponentially and changing each time?

Original
Site
Clone of Clone of
Original Original
Site Site
Clone of Clone of Clone of Clone of
Clone of Clone of Clone of Clone of
Original Original Original Original
Site Site Site Site

Some of these clones would be worthless, but wouldn’t one of them be a gem that takes your websitein a
brilliant direction unforeseen by you? Isn’t thisthe open-source idea— applied to websites?

In future versions of OpenPortal not only will the website be changeabl e, but usersthemselves will be able
to create entirely new weblets, extending OpenPortal in directions unforeseen to the OpenPortal team.
OpenPortal isitself built with weblets: because of this, OpenPortal isasystem that supports the evolution
of its own process of evolution— the entire foundation of OpenPortal itself, not just its content, will be
changeabl e through OpenPortal itself!

Some shouts from the audience:

“1t will collapseif you make it that open...”

“ But you can’t allow such openness!”

“ No one needs that level of openness anyway...”

“ Every other company and person will destroy you if you're that open!”

Weren't these the original criticismsrailed against the Internet, and isn’t it damn moreinteresting that its
closest competition, the closed monolithic telecom network? The same criticisms were shot at the World
Wide Web, which is vastly more interesting than the closed Information Superhighway peddied by the
cable companies.

OpenPortal is about building amassively open system that can handle and tolerate its own rapid evolution
and change. Whileyou can build atraditional closed system with OpenPortal, the more you experiment
with crazy openness on your own OpenPortal the more interesting your site will become.



6. Websites become discussions and discussions become websites.

When users have the ability to create entirely new pieces of awebsite, the website itself simply becomes
one giant bubbling conversation. But on OpenPortal chaos does not ensue because webl ets provide just
enough order to keep things structured. If editing an OpenPortal page were more like writing with a

WY SIWY G (What-Y ou-See-Is-What-Y ou-Get) editor like Microsoft Word, then there would be absolutely
no structure to keep things ordered. With afew phrases of ECL users can create entirely new site weblets,
article weblets, comment weblets, etc. in response to other site weblets, article weblets, comment weblets,
etc. What once used to be static pages can now branch out into entirely new sections created by users. The
Main Page can be filled with Comment weblets, or any type of weblet.

"But don't web-based threaded discussion boards already provide a place for discussions?"

Yes, if you only care about having flat discussionsthat have no more structure than a hierarchy.

OpenPortal allows you toleap out of athread-discussion boards structureinto entirely new directions. Free
yourselves from the shackles of threaded-discussion boards! Imagine being able to respond to a comment
with an entirely new OpenPortal Site, made while your typing the response |t'snot about WYSIWYG —
it's about discussion, but at a higher-level than simple threaded discussion boards can handle.




7. Thewebste supportsits own growth.

An OpenPortal allows the creation of new Sitesand Areaswithinit. From any edit form a user can enter
the ECL command create Site Webl et or create Area Webl et:

Some Wehlet
Weblet Name; ISumE Mame
Some Property:  [[[create Site Ueblet]] =

[ -
Ewel

Unlike other weblets, the Site or Areaweblet will not be embedded in the page you type the command in—
thisiswhy it can be typed from anywhere in an OpenPortal. When the user hitssave aform will come
back to create the new site:



Site Wehlet et secunty settings

Site Mame: ILirrux Site
Site Description: ;J
Site Arsas !
Remove Araa |
Create Ares |
Page Contents : _.J

H
Save
The user can click the Create Area button to create anew Areain this site:

Area Weblet = et secunty settings
In Site: Linuz Site
Area Name: IMain Area
Site Description; ﬂ
Page Contents ! =

The user can now begin populating this areawith new weblets.

The user that creates anew Site instantly become the Owner of that Site and can set permissions and give
out roles. Theoriginal creator istherefore free to make the Site as open or as closed as he wishes.



8. The walls betweenweb sites are broken down, and OpenPortals can interoper ate.

Let's examine the state of the web today. Major websites and portals sit like monolithic cathedrals on the
web landscape:

ortress Yahoo

Fortress Go

Network

Each one of these cathedrals wants to be the cathedral, sucking in and controlling everyone else — none of
them would ever dare to have their fortresses interoperate, except through corporate mergers!

Enter OpenPortal. In afuture OpenPortal release weblets will become mobile weblets, able to move
between OpenPortals. OpenPortalswill be able to form networks with each other. This entire OpenPortal
network will be open, just like the Internet and the World Wide Web. Using mobile weblets OpenPortals
will be able to support the following between them:
Weblets from one site can be automagically embedded and linked to using Easy Command
Language
Every user will get a clipboard— using dynamic html they can drag any weblet onto this clipboard
from one OpenPortal site and paste it onto another. In the background the two OpenPortals are
exchanging the mobile weblet.
Subscribing to aweblet amounts to simply copying and pasting a weblet from aremote
OpenPortal. A link isretained to the old remote weblet, so that whenever the old webl et changes
the new "pasted" weblet changes as well.
Compound documents of webl ets can be created, with some of the weblets actually being from
other OpenPortal sites and being updated whenever the original changes
A universal log-in network can be created across OpenPortals for higher-level user-services
Users can "carry” their web-sites around with them from OpenPortal to OpenPortal, asif it werein
their back pockets.
Many other exciting features

It will be exciting when OpenPortal s begin to interoperate in future versions. Each of these OpenPortals
will start astiny rain drops on the internet, insignificant when compared to the huge puddles that are the
major portals and major web sites; however, these OpenPortals will actually work together:



@
OpenPortal ®
OpenPortal

Cannot Interoperate
ortress Yahoo/ -

@
® OpenPortal
OpenPortal
=1
—+
OpenPortal @ OpenPortal
O
©
5 OpenPortal
Q g Fortress Go
= OpenPortal Network
(1)
®
OpenPortal

But when athousand rain-drops begin to merge together, forming larger and larger puddles, the portals and
large siteswill haveto listen: web-sites are not cathedrals, they are abazaar . In the beginning we were
nothing but afew rain-drops, but when afew rain-drops coal esce they suck in all the puddles:

The OpenPortal Network

Openportal

Opgnkortal OpenPortal

Fortress Go
Network

OpenPortal

OpenPortal OpenPortal

This phenomenon has occured in the past for many of the major internet technologies: internet email, the
World Wide Web, etc. The diagram below illustrates how in 1990 most of the major online services and
software packages that supported email, such as Compuserve, AOL, Lotus Notes email systems, and others,
could barely support interoperability of email systems between competing services, if they even tried.
Around thistime SMTP internet email servers began to proliferate; they were tiny and located mostly in a
university setting:



Email Systems About ~1990

@
SMTP ®
SMTP

Compuserve
Email System

AOL Email

Cannot Interoperate
-

System

®
SMTP

SMTP
= ®
@ SMTP
S
2 SMTP

Lotus Notes Q . Cl-Mail Email
Email System % SMTP Systems

%)
=@
o

Before anyone knew what happened these tiny servers had surrounded most of the major online services,
conglomerating themselvesinto one giant network that actually supported interoperability between
themselves and their competition:

The SMTP Network

AOL Email Compuserve
System Email System

SMTP

These diagramsillustrate what OpenPortal really is: alight-weight component-level standard agreed upon
by websites, called weblets, which are controlled by the users through an OpenPortal.

It isonly through the openness of the bottom-up process that we can build an interoperable web controlled
and built by itsusers. OpenPortal isthe mp3 of web-site technology. Hopefully if you can-->change the

technology<--, you can -->change the rules<--.



9. If they don't want to play, wrap 'em as components.

We can't expect the big boys to play nice when OpenPortal comes along, so OpenPortal includes a
controversial technology: the ability to wrap portions of other, non-OpenPortal websites as weblets. For
example, the weblet below wraps a portion of the Excite Communities website as awebl et:

Excite Communities Wehlet Edit
ATt v FTOUD iti :
i i Communities Name some Groups MName
i Communities Address: someproupi@excite com
Login to Fxcie Commmities _ _ﬂ‘gr P@
Communities This 15 a test
Description:

Hereis another web portal service wrapped asaweblet. In thiscaseit wraps a portion of awebsite known

as eGroups as awebl et, to reuse its group functionality within an OpenPortal without anyone even knowing
it actually makes calls back to the eGroup website:

Group Weblet Edit

LI T IO i

S Group Name: Some Groups Mame
Trertibers

wanbers .. CrOUP Address:  somegroup@eGroups.com

Add Growp Poll  Group This is a test
ME"’:' Description:

Both of these weblets can now be mixed and combined with other weblets, all on the same OpenPortal

page. Some of the other weblets could themselves actually be wrappers around other websites. OpenPortal

can then use these weblets to force the websites to interoperate, or to provide a unified portal to the user
based on many other websites functionality.



10. You may not even know you're on an OpenPortal (because you're not).

Some people can choose to throw most of OpenPortal away and just use the Weblet Framework (see the
document "Creating aWeblet") A weblet isareusable piece of web-functionality that uses Easy Command
Language and html asits front-end and two technol ogies known asweblet descriptors and Weblet Server
Pages (WSP) on the middle-tier. Weblets can wrap potentially any back-end technology, whether it is
JavaBeans, relational databases, CGI-BIN scripts, or even other websites. Technically, aweblet is nothing
more than abundle of properties, ECL commands, and template scripts. These are al declared in afile
known as aweblet descriptor. Hereisthe weblet descriptor for a Business Card Weblet:

<? xm version="1.0" ?>

<webl et >
<!l —The Busi ness Cards properties: nane, organi zation, slogan, role,

emai |, and phone nunber -->

<property name="nane" default-val ue="Your Name"/>
<property name="organi zati on" default-val ue="Your Organization"/>
<property nanme="sl ogan" default-val ue="Your Slogan"/>
<property nanme="rol e" default-val ue="Your Role"/>
<property name="email" default-val ue="Your Email Address"/>
<property name="phone_nunber" default-val ue="Your Phone-Nunber"/>
<!l —The Busi ness Cards conmands: display, edit, and save -->
<conmmand ful | -command="di spl ay this" enbed="Busi nessCard. wsp"/>
<command full-command="edit this" enbed="Busi nessCard.wsp"/>
<conmand ful |l -command="save this" enmbed="Busi nessCard. wsp"/>

</ webl et >

Thisweblet descriptor isjust aflat-text file that sitsin the filesystem. It establishes the properties and
commands for abusiness card weblet. Notice thethree <command> tags. These establish the edit,
display, andsave commands for the weblet. Y ou can choose to throw away al of these commands and
create your own new commands, compl etely dropping the edit command if you want. For example, you
could create a"send card owner email” command and a"add card owner to contactslist" command by
adding the following to lines to the webl et descriptor file:

<conmmand ful |l -command="send card owner
emai | "enbed="Busi nessCard. wsp"/ >

<conmand full-command="add card owner to contacts |ist"
enbed="Busi nessCard. wsp"/ >

Now, if the user enters the ECL commands "send card owner email" anywhere in the edit form of this
weblet or clicks on ahyperlink titled send card owner email, then this command will be found in the weblet
descriptor file and run.

Every command in aweblet is associated with a Weblet Server Pages(WSP) file that is executed when the
command is executed by the user:

<conmmand full-command="edit this" enbed="Busi nessCard.wsp"/>

ThisWSPfileisjust like Java Server Pages (JSP) or Active Server Pages (ASP) (it's actually just a subset
of the two), and contains amix of html and java, javascript, or webl that is executed on the server side. In
the future anything could be called from the embed parameter, whether it's a perl script, COM control, PHP
script, server-side include, or Frontier script. In thisway you can expose the functionality of sophisticated
server-side perl scripts as simple human executable ECL commands.



Creating a Weblet
TheBasic Weblets

Before we begin to create webl ets, we must examine what kinds of weblets are possible. Most
weblets can be divided into two types: property weblets and service weblets. Property weblets are very
simple; they arejust alist of propertiesthat are strings. For example, a business card weblet could consist
of five basic properties. name, organization, email, phone-number, and address. The diagram below isa
simple property weblet with three properties: Property 1, Property 2, and Property 3. A display template
can then display these propertiesin aweb browser. The <%=weblet.Property1%> expression is aWebl et
Server Pages (WSP) phrase that displays the value of Propertyl. Property weblets don't just include a
template to display themselvesin html; they also include an edit form that can be generated on demand to
change aweblet's properties.

Property Weblet

Display Template

Weblet <B>Propertyl: </ B> <%webl et. Propertyl%
<B>Property2: </ B> <%webl et. Property2%
Propertyl = valuel <B>Pr operty3: </ B> <%webl et. Property3%

Property2 = value2

Property3 = value3

Display Template Output

Propertyl: val uel
Property2: val ue2
Property3: val ue3

B

Edit Form

Property1: [value

Property2: [waluez

Propertys: [value3

Sane

The second kind of weblet isaservice weblet. Thiskind of weblet wraps an underlying service
and then exposes these services as Weblet Commands. This can be used to wrap other web-technologies,
like perl scripts or Java Server Pages (JSP) files, or to offer easy to use services through OpenPortal. Inthe



example below aweb-based email system that was written in perl is wrapped by aweblet that exports email
commands, such as Add User. These commands could then be used from any weblet by entering >Add
User<, which would cause the Weblet Command parser to automatically hyperlink Add User and initiate
that action when clicked on. While a property weblet provides aform to changeits properties, service
weblets usually have configure forms to configure the services. An example configuration formis shown
below that allows a user configure the email weblet through aweb browser.

Weblet

s

Perl Web-Based
Email Scripts

Service Weblet

Weblet Commands

Add User
Remove User
Send Email
Get Email

Using Exported Actions

<H1>Some Toolbar</H1>
-->Add User<--
-->Send Email<--

Configuration Form

Adrrinistration Password: !sume_pas sword

Dormain Address: [OpenPortal.org

POPE Server: iprS.DpenpDrtal.Drg

Save

Resulting HTML

Some Toolbar
Add User
Send Email

Service weblets and property weblets are not mutually exclusive; most weblets will probably be a
mix of thetwo. For example, aweblet could provide some propertiesthat arein-place editable aswell as

export some services




Different Skills, Different Needs

There are many different kinds of users with different needs. The Weblet Base divides these usersinto two
types: those on the server-side who have direct shell access to an OpenPortal server, and those on the
client-side who are operating through a browser.

Creating a Weblet on the Server-Side

Many computer programming languages seperate what a program does from how the program doesit.
Thisis called seperating the what from the how. For example, one can specify that a program sorts items
(the what) from how the sorting algorithm actually works (the how). The C language does this by
seperating variable and function declarationsinto a header file and the actual C code for the header fileinto
asourcefile. Javahasthe ability to seperate the what into something called aninterface, while the actual
how istaken care of by aJavaclassthat implementsthe interface. There are many good reasons to seperate
what a program does from how it actually performsit. Oneisthat it makes programs easier to maintain and
change, since one can easily change how a program actually works "under-the-hood" without changing
what it actually does.

A similar concept isthe Model-View-Controller pattern. In this design pattern a model describes what
something does while a view-and-controller describes how the model is visually presented and controlled
by the user. The model contains no presentation logic; it simply simulates some object (i.e. itisamodel).
The view and controller modules are usually combined together into one, sinceit is natural to specify how
something looks along with how a user manipulatesthe view. Asan example of the model-view-controller
pattern, one could have amodel that simulates a business card, providing methods to get and set this
business card's properties. A seperate view and controller module could display this business card visually
on amonitor and allow a user to manipulate the business card using a mouse. Java Server Pages (JSP)
follows this pattern; in JSP a JavaBean acts as a model, while a JSP page mani pul ates this JavaBean model
to create an HTML presentation and to respond to user requests through the browser. The model-view-
controller pattern allows one to change how a system looks and is controlled without affecting the model.
In the business card example, one could provide all types of new presentations and responses to user input
for this business card model without having to change the model.



Creating weblets integrates both principles. Following the principle of seperating the what of aweblet

from itshow, aweblet consists of two pieces. one piece promises the what of the weblet, exposing the
properties and commands that the webl et supports, while the other piece provides the actual how that gives
theweblet it's functionality:

Weblet Descri ptO r Describes the commands a weblet is

capable of doing, and what
the what of a weblet properties a weblet has

Propertyl Command1
Property?2 Command?2
Property3 Command3

Actual functionality
implemented by

Weblet Server Pages
the how of a weblet

Actually implements the functionality
L —— for this weblet

WebletCommand.full_command ==

"Commandl") {%>
<H1><B>You requested

Command1!</B></H1>

<%} %>.............




Following the second principle, these two pieces can be seen as the model and view-controller for the
webl et:

Weblet Descri ptO r Describes the commands a weblet is

capable of doing, and what
the model of a weblet properties a weblet has

Propertyl Command1l
Property2 Command?2
Property3 Command3

Presentation and
flow of control
defined by

Weblet Server Pages
the view-controller of a weblet

Provides the presentation that
............. <% if ( determines how the weblet is
WebletCommand.full_command == presented

"Commandl”) {%>
<H1><B>You requested

Command1!</B></H1>

<%} %>.............

These two webl et pieces are contained in two seperate files, awebl et descriptor file and a Weblet Server
Pages (WSP) file. A weblet descriptor file hasthe file extension .weblet, while aWSP file has the
extension .wsp. A weblet descriptor file declares the commands and properties that a weblet supports, and
also specifies which WSP file to execute for which commands. A WSP file contains scripting code and
HTML presentation code.

Sequence of Actionsfor Weblet Descriptor Fileand Weblet Server Pages File

When a user issues aweblet command, such as "edit", a specific weblet descriptor isfound for the type of
weblet that the command is performed on. In the example below the weblet type is a Business Card.weblet.
Inside thisweblet descriptor isalist of all the commands that the weblet supports. In this case thereisonly
one command, "edit." Every weblet command is associated with a\Weblet Server Pages (WSP) file. Inthe
example below the "edit" command is associated with the WSP file Business Card.wsp. Since the user
requested the "edit" command, the associated WSP file Business Card.wsp is executed and the HTML
results are returned.



Business Card Wehlet Edit

BHSES}fStEH’l: Inc. User clicks on hyperlink

2840 Broadmrae HE36
Menar Yords | FY 10025

inanar hacesycheih COML Cregte. Wajrizin. Shame.

Brad Neuberg
Wice Precide ¢ of Teckmoloze:

Command tag for "edit" is found

Weblgt Descriptor

Busin;ss Card.weblet

<weblet>

</weblet>

<command action="edit" embed="BusinessCard.wsp">

WSP script associated with
"edit" command tag is
executed

Weblet Server Pages

Business Card.wsp

goes here</H1>

<H1>HTML that defines the business card's edit form

<% // a scriptlet block to check for edit conditions %>

MName:

HTML is Output drganization:

Address:

P Slogan:

Role:

Ermail:

Phone-Number:

Business Card Wehlet

|Eirad Meuberg

|<b>Elase<,"b>System, Inc.

|284D Broadway #336<br>MNew York, MY 10025<hr>w

|Create. kaintain. Share.

I\fice Fresident of Technolagy

Ibrad@basesystem.cum

|212-853-3602

Save |



Weblet Descriptor Files
A weblet descriptor fileiswrittenin XML. It beginswith astandard XML directive:
<? xm version="1.0" ?>
Next comes the declaration of aweblet:

<? xm version="1.0" ?>
<webl et >

If the weblet isaweblet container than thistag would be

<? xm version="1.0" ?>
<webl et cont ai ner >

If aweblet is aservice weblet, then the attribute service-webl et should be set to true:

<webl et service-weblet="true">

By default thisis set to false. There can only be one copy of thisweblet if itisaservice-weblet (i.e. itisa
singleton). If someone enters aweblet command without any target:

-->L ogin User<--

Then this command will automatically be sent to the one webl et that has this command. Thisallows oneto
export weblet commands that are available anywhere in the site as services. Inthe Login User example
above, aLogin weblet could be created that is a service webl et which exports this command.

After the weblet tag comes the declaration of a property:

<? xm version="1.0" ?>
<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>

This declares that the webl et has a property named propertyl and that the default-value given to this
property when anew weblet of thistype is created isdefaultValuel. The default-value argument is
optional, and if not given then default-value for a property isjust the empty string "". The name of a
property must be between a-z, A-Z, 0-9, or the special characters underscore _.

A weblet can have several properties:

<? xm version="1.0" ?>

<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property name="property3" default-val ue="defaultVal ue3"/>

All weblets share certain standard-properties, such as an owner or the date the weblet was created. These
standard-properties do not need to be declared in the webl et descriptor, but it is sometimes useful to over-
ride one of their default values.. All standard properties are defined with the <standard-property> tag.

<? xm version="1.0" ?>
<webl et >



<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property nanme="property3" default-val ue="defaultVal ue3"/>

<st andard- property nanme="default _input" default-
val ue="<i nput type=text size=42 nmaxl engt h=80>"/>

This tag over-rides the standard-property defaul _input, which has to do with the inplace-editing feature of
weblets (thisis described below).

Command declarations come after property declarations, describing the commands that the weblet
supports:

<? xm version="1.0" ?>

<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property nanme="property3" default-val ue="defaultVal ue3"/>

<st andard-property nane="default input" default-

val ue="<i nput type=text size=42 nmaxl engt h=80>"/>
<conmand acti on="performSoneActi on" perform on="onSonmeCbj ect"”
enbed="soneFi | e. wsp"/ >

Thistag declares that the weblet has a command performSomeAction onSomeObject, and when this
command is activated (say by a hyperlink), then the Weblet Server Pages file named someFile.wsp should
be executed and its HTML results embedded.

A weblet can have several commands:

<? xm version="1.0" ?>
<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property name="property3" default-val ue="defaultVal ue3"/>
<st andard- property name="defaul t _i nput" default-val ue="<i nput
type=t ext size=42 maxl engt h=80>"/>
<conmmand acti on="perfor nSoneActi on" perform on="onSoneChj ect"”
enbed="soneFi |l e. wsp"/ >
<conmand acti on="anot her Acti on" perform on="onSonmeChj ect"
enbed="soneFi |l e. wsp"/ >

The action attribute usually identifies some verb, such asedit, set, and display, while the perform-on
attribute isusually adirect object of the verb, such asthis, properties, business card. Multiple actions and
perform-on's can be specified by using acomma:

<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property name="property3" default-val ue="defaultVal ue3"/>
<standard-property name="default _i nput" default-val ue="<input
type=t ext size=42 nmaxl engt h=80>"/>
<conmand acti on="performSoneActi on" perform on="onSomeCbj ect"”
enbed="soneFi |l e. wsp"/ >
<conmand acti on="anot her Acti on" perform on="onSonmeCbj ect"”
enbed="soneFi | e. wsp"/ >



<command acti on="add, create" performon="this"
enbed="anot herFi |l e. wsp"/ >

This new command tag states that whenever the weblet commands "add this" or "create this" isrequested
by the user, the WSP file named anotherFile.wsp is executed and its results are embedded. Using commas
to specify several actions or performon'sis useful for specifying aweblet command that may have several
different ways of being expressed. For example, the weblet commands "add this' and "create this" are
basicly equivalent, and commas allow this to be expressed as one command tag.

Instead of providing the parts of speech (i.e. the action and the perform-on) for acommand, the full
command can be provided through the full-command attribute:

<? xm version="1.0" ?>
<webl et >
<property name="propertyl" default-val ue="defaultVal uel"/>
<property name="property2" default-val ue="defaultVal ue2"/>
<property name="property3" default-val ue="defaultVal ue3"/>
<st andard- property name="default _i nput" default-val ue="<i nput
type=text size=42 maxl engt h=80>"/>
<command acti on="perfornSoneActi on" perform on="onSoneCbj ect"”
enbed="soneFi |l e. wsp"/ >
<commmand acti on="anot her Acti on" perform on="onSoneChj ect"”
enbed="soneFi |l e. wsp"/ >
<conmand ful |l -command="sone | ong command" enbed="soneFil e.wsp"/>

Every command tag must provide the embed attribute. This providesascript file that is executed when the
command is requested by the user. Thisscript fileis passed areference to the weblet itself, the webl et
command that was requested by the user, and the request and response objects that are a part of the servlet
API; thisis covered in more detail in the section on Weblet Server Pages. The WSP filename that is given
in the embed attribute is within the Java Naming Directory Interface (JNDI) namespace; if the filename has
no directory slashes at the beginning of it, it is searched for in the weblet's local directory.

Other scripting languages and technol ogies can be called other than Weblet Server Pages. It should be
possible to make JSP and A SP scripts callable from the embed attribute, though thisis not planned for the
current release. Currently the only technology other than WSP that can be called are java methods in the
weblet itself. A method on the weblet classitself can be called by using the "this" operator and the method
name:

<command ful | - command="sone | ong command"
enbed="t hi s. sonmeMet hod() "/ >

Thiswill call the method someMethod() on the webl et itself when the command specified is encountered.
Thisisuseful for calling default methods in the webl et base-class for certain default actions. For example,
when aweblet-container receives the "add" command it should call a predefined method in the
WebletContainer base class named addWebl et(:

<webl et - cont ai ner >
<command acti on="add" performon="this" enbed="this.addWeblet()"/>

Any method that is called from the embed tag must be able to take the webl et itself as areference, the
weblet command, and the request and response obj ects as arguments.

Command tags are not exclusively executed; if the weblet command requested by the user is declared in
several command tags, then each of the scriptslisted by these tagswill be run one after another and their
output will be concatenated together. For example, if aweblet has the following two command tags:



<conmand acti on="save" performon="this" embed="this.saveWblet()"/>
<conmand action="save, di spl ay” performon="this" enmbed="soneFile.wsp"/>

and the weblet command "save this" has been requested by the user, then the first command tag will
executefirst by calling this.saveWeblet(), followed by the second command tag which will execute
someFile.wsp and concatenate its output onto the first output.

Many times the perform-on attribute will be set to "this." Since the perform-on attribute is meant to be the
direct-object of the action, it isuseful to have a short-hand way of deducting whether a requested weblet
command actually refersto the weblet defined in the webl et descriptor itself. It isimpossible and inflexible
to hard-code the actual name of the webl et into the perform-on attribute. For example, if thereis abusiness
card named "Brads Business Card", and a user requests the weblet command 'edit "Brads Business Card"’,
this could be hard-coded as:

<conmand action="edit" perform on="\"Brads Busi ness Card\"">

However, it would be useful if the system automatically checked to see whether the webl et descriptor that

is being called matches the perform-on attribute; if so, it convertsthe value of perform-on in the original
weblet command into the word "this." Inthe example above, if the weblet that is being called is named
"Brads Business Card" and the target of the "edit" command is"Brads Business Card", then the value of the
perform-on attribute in the actual weblet command variable, WebletCommand, is changed to "this". This
means that the above command tag can be converted to:

<conmand action="edit" performon="this">
which is much more flexible and generalized and |ess dependent on the actual name of the weblet.

A set of Dynamic HTML properties are also defined for the <weblet> tag and the <property>tag. The
attribute draggable can be added to either a<weblet>, <weblet-container>, or <property> tag:

<? xm version="1.0" ?>
<webl et draggabl e="true">

<property name="propertyl" default-val ue="defaultVal uel"
draggabl e="true"/ >

<property name="property2" default-val ue="defaultVal ue2"/>

<property nanme="property3" default-val ue="defaultVal ue3"/>

<standard- property nanme="default_input"” default-val ue="<input
type=text size=42 maxl engt h=80>"/>

<conmand acti on="perfornSoneActi on" perform on="onSonmeChj ect"”
enbed="soneFi |l e. wsp"/ >

<conmand acti on="anot her Acti on" perform on="onSonmeCbj ect"
enbed="soneFi |l e. wsp"/ >

<conmand full-command="some | ong command” enbed="soneFile.wsp"/>
</ webl et >

The draggabl e attribute states that either the weblet, weblet-container, or property isdraggable. The WSP
script that is called can check this property, and can either honor it or not when attempting to create the
javascript and Dynamic HTML that is part of making weblets drag and droppable. If the draggable
attribute isleft off it defaultsto false.

Another Dynamic HTML attribute is the inplace-editable attribute. Thisattributeis similar todraggablein
that it can only be placed either on a<property> tag, and denotes that the property can be edited simply by
clicking on the element:

<? xm version="1.0" ?>



<webl et draggabl e="true">

<property name="propertyl" default-val ue="defaultVal uel®
draggabl e="true"/ >

<property name="property2" default-val ue="defaul t Val ue2" i npl ace-
edi tabl e="true"/>

<property name="property3" default-val ue="defaultVal ue3" inplace-
edi tabl e="fal se"/ >

<standard- property name="default _i nput" default-val ue="<input
type=t ext size=42 nmaxl engt h=80>"/>

<conmand acti on="performSoneActi on" perform on="onSonmeCbj ect"”
enbed="soneFi |l e. wsp"/ >

<conmand acti on="anot her Acti on" perform on="onSonmeCbj ect"”
enbed="soneFi | e. wsp"/ >

<comand ful |l -command="sone | ong command” enbed="soneFile.wsp"/>
</ webl et >

If the inplace-editabl e attribute is left off it defaultsto true. Like the draggable attribute, underlying WSP
scripts can check whether a given property has the inplace-editabl e attribute set to true and decide whether
to honor thisflag. Itismerely asuggestion to the underlying presentation WSP.

When a property that isinplace-editableis clicked on, it is replaced by some kind of form input. The
default isthat the property is replaced with a standard <input type=text> tag, though this default can be
over-ridden by setting the standard-property default_input to something else:

<? xm version="1.0" ?>
<webl et draggabl e="true">

<property name="propertyl" default-val ue="defaultVal uel"
draggabl e="true"/ >

<property name="property2" default-val ue="defaultVal ue2" inplace-
edi tabl e="true"/>

<property nanme="property3" default-val ue="defaultVal ue3" inplace-
edi tabl e="fal se"/>

<st andard- property nanme="default _input" default-

val ue="<i nput type=text size=42 maxl engt h=80>"/>

<conmand acti on="performSoneActi on" perform on="onSomeCbj ect"”
enbed="soneFi |l e. wsp"/ >

<conmand acti on="anot her Acti on" perform on="onSonmeCbj ect"”
enbed="soneFi | e. wsp"/ >

<comand ful |l -command="sone | ong command” enbed="soneFile.wsp"/>
</ webl et >

For any property which has had inplace-editabl e be set to true and which does not define its own custom
input, the default_input is used for this property wheniit is clicked on. For example, in the above weblet
descriptor block when property?2 is clicked on in abrowser it is replaced with the default_input, whichis
<i nput -type=text size=42 maxl| engt h=80>. Individua inplace-editable properties can also
provide their owninplace-input attribute for what kind of input they are replaced with when clicked on:

<property nanme="property2" default-val ue="defaultVal ue2" inpl ace-
edi tabl e="true" inplace-input="<textarea>"/>

Thiswill replace property2 with a <textarea> when it is clicked on rather than the default_input of <input-
type=text size=42 maxlength=80>. Note that for both the default_input standard-property and the inplace-
input attribute only aform input type may be given. Thisform input must not define the name or value
attributes of the input, and cannot include more than onetag. The inplace-editing engine automatically fills
these values in according to certain characteristics.



<property nanme="property2" default-val ue="defaultVal ue2" inpl ace-
edi tabl e="true" inplace-input="<textarea>sonet hi ng</textarea>"/>
INCORRECT

<property name="property2" default-val ue="defaultVal ue2" inplace-
edi tabl e="true" inplace-input="<textarea wrap=virtual >"/>
CORRECT

<property name="property2" default-val ue="defaultVal ue2" inplace-
edi tabl e="true" inplace-input="<input type=text name=property2>"/>
INCORRECT

<property nanme="property2" default-val ue="defaultVal ue2" inplace-
edi tabl e="true" inplace-input="<input type=text val ue=sonethi ng>"/>
INCORRECT

A final example weblet descriptor is provided for a business card webl et:
BusinessCard.webl et:

<? xml version="1.0" ?>
<webl et draggabl e="true">
<property name="nanme" default-val ue="Your Nanme"/>
<property name="organi zati on" default-val ue="Your Organization"/>
<property name="sl ogan" default-val ue="Your Slogan"/>
<property name="rol e" default-val ue="Your Role"/>
<property name="emmil|" default-value="Your Enmil Address"/>
<property name="phone_nunber" default-val ue="Your Phone-Nurber"/>
<command action="save, di spl ay" performon="this"
enbed="Busi nessCard. wsp"/ >
<conmand action="edit" performon="this" embed="Busi nessCard. wsp"/>
<command action="set" performon="security, security settings,
settings, security properties" enbed="StandardSecurityFormwsp"/>
</ webl et >

Weblet Server Pages

Weblets are actually scripted seperate from the webl et descriptor in aWeblet Server Pages (WSP) file,
which has the extension wsp. A WSP file consists of scripting control code and HTML presentation code.
WSP is based on Active Server Pages (A SP) and Java Server Pages (JSP), and is alight-weight subset of
both standards.

All WSP files begin with alanguage directive that states what language the script in the WSP file iswritten
in:

<%@ | anguage="j avascri pt" %

Thisdirective isinspired by the JSP specification. The following languages are currently supported in
WSP:

Javascript/ECM Ascript (language="javascript|ecmascript")

WebL (language="webl ")

Java



The preferred and default |language for WSP pagesis Javascript. All examplesin this section use
Javascript.

Therest of the WSP file consists of scriptletsand HTML. A scriptlet isablock of code between the tags
<% and %> in the language defined in the language directive:

Example.wsp:

<%@ | anguage="j avascri pt" %
<H1>Hel | o worl d! </ H1>
<%
var soneVari able = "bl ah";
function someFunction() {
write(soneVariable);
%>
<CENTER>Sone nore HTM.</ CENTER>

If aweblet descriptor existed that had the following:

<webl et >
<conmand action="di spl ay" enbed="Exanpl e. wsp" >
</ webl et >

Then when a user requested the weblet command display, Example.wsp would be executed and the results
would be returned as astring. The scriptlet block would execute and its results would be embedded in
Example.wsp's output:

<H1>Hel | o worl d! </ H1>
bl ah
<CENTER>Sonme nore HTM.</ CENTER>

While WSP files can be thissimple, in general aWSP file is used to perform and present a user's webl et
command request. Several objects are exposed to the W SP scripting language in the scripting language's
native format to help proces the user's weblet command request:

Standard JSP objects

0 request

response
serviet
session
input
output
parameters
Special WSP objects
weblet
WebletCommand
WebletManager
naming

OO0OO0OOo0OO0Oo

OO0 oo

The standard JSP objects can be referenced exactly asone would in java. The following would be legal
references:

0 servlet.getServletContext().getReal Path(myFilename)

0 reguest.getRemoteUser()

0 response.setHeader(" Content-encoding”,"binary")

The servlet object corresponds to the Java servlet'sthis object. Since the same servlet is shared by all WSP
pages, serviet isactually aglobal object.



The request and response objects are the same as their corresponding counterpartsin the service method
argument list. These objects are refreshed with each WSP page invocation.

session is actually a shorthand for request.getSession(true). By its nature, this object is static for the
duration of the client's connection.

input is actually a shorthand for request.getlnputStream(), while output is shorthand for the string result
that isreturned by the execution of the WSPfile.

The parameters object contains the collection of parameters passed to the WSP page through the request's
query string. Single-valued parameters are stored as scalars, multi-valued parameters are stored as arrays.

Anindividual parameter (for instance, filename) can be referenced as parameters.filename or as
parameters["filename"].

Referencing non-existant parameter properties should not cause any errors. If anon-existant parameter is
referenced then the offending javascript statement is simply ignored.

WSP provides special objectsto make it easy for WSP scripts to manipul ate the webl et descriptors that
called them. Thefirst isthe WebletCommand object. This object exposes all of the details concerning the
weblet command that the user requested. It has the following properties:

WebletCommand.action — the action requested by the user

WebletCommand.perform_on — the object on which the action was requested
WebletCommand.full_command — the full command (action + perform_on)
WebletCommand.weblet_name — the name of the weblet on which the command is executed on
WebletCommand.current_user — areference to aUser object for the user that executed the command
WebletCommand.current_container — areference to the parent weblet container of the weblet that the
command was executed on

WebletCommand.current_site — areference to the Site object that the target weblet isin
WebletCommand.current_area— areference to the Area object that the target weblet isin
WebletCommand.full_name — the full path-name of the target weblet

The webl et object provides access to the webl et that called the WSP file and information about the webl et.
Using Javascript one can access everything within the webl et object using the Document Object Model
(DOM). Theweblet object exposes all of the values of aweblet's properties that were defined in the weblet
descriptor:

<% write(webl et.propertyl);
webl et. property2 = "hello world";
%>

Further, any of the attributes that were defined for these propertiesin the weblet descriptor, such as
draggable or inplace-editable, are accessible as well, using the Document Object Model:

<%

webl et . propertyl. draggabl e

webl et . property2.inpl ace-editable
%>

All of the properties can be referenced as follows, using Javascript:
<%

webl et. al | .tags("property");
%>



Thisreturns an array of all the properties.

A weblet's standard-propertiesis referenced as follows:

webl et . st andard_properties. property_name

where property_name is some standard property, such asthe owner:

<%

webl et . st andard_properties. owner = "Brad Neuberg";

%

A different weblet command than the one currently executing in the WSP file can be invoked on the weblet
asfollows:

<%

webl et . enbed(" Ful | Command", Webl et Command, request, response);
%>

where Full-Command is some weblet command like "display business card". If the command does not
exist no error isthrown and the embed() method simply returns.

WebletManager exposes methods for weblets to gain a context to the naming service, as well as a method
to embed other weblets.

The naming object exposes the root of the naming service so that operations may be performed in the
directory services.

It is recommended that WSP files not output <html>, <head>, or <body> tags, since several WSP files
could be chunked together by aweblet container and the existence of multiple <html> or <head> tagsin
each of these chunked weblets could confuse browsers.

Just asin Java Server Pages, the shortcut tag <%== someV ariable.property %> existsto print out a
variable's current value. For example, to print out the value of the weblet property organization in some
weblet, one would do asfollows:

<H1>Hello I am a nenber of <%= webl et.organization %</Hl>

which if weblet.organization was set to "OpenPortal" would print out:

<H1>Hé€lo| am amember of OpenPortal</H1>

DynamicHTML Tags

OpenPortal provides some conveniance tags that can be used in WSP scriptsto help create Dynamic
HTML interfaces. All of these tags are based on XML, and have the namespace webl et attached to them.
These tags help build the following functionality into weblet user interfaces:

Inplace-editing

In the future these tags and the DHTML subsystem will be extended to allow the creation of extremely
powerful user interfaces for webletsin away that istransparent to both the devel oper and cross-platform.

Inplace-Editing Tag



To add in-place editing to a property in aWSP file, place the tag <weblet:INPLACE-EDIT> around the
html which displaysthe property. For example, if one has aweblet that has the property organization in it
and wishes to make it inplace-editable, one would surround it with the inplace-edit tag:

I am a nmenber of <webl et:| NPLACE-EDI T property-
nane="or gani zat i on" ><%=webl et . or gani zat i on%</ webl et: | NPLACE- EDI T>

If the value of organization was"OpenPortal", then thiswould print out:

| am amember of OpenPortal

and when a user clicked on the word 'OpenPortal’ the word would instantly turn into asmall edit field for
the value of weblet.organization to be changed.

OpenPortal automatically inserts the correct javascript and information in aWSP file when sent to the
client if it contains <weblet:INPLACE-EDIT> tags.



Examples of Creating Weblets

The Simplest Weblet — Hello World

Let's start with the absolute simplest weblet, one that prints "Hello World" when it receives the weblet
command "display hello world". When the user clicks on the web page below:

A C:\DpenP oital ocuments \Ceabrgweblets\tenp kiml - Miciosolt Inbesne! E mplore
fle E& Y o Fywoiles  Help
.o+ .3 B 4O A M I ¥ | OB F
Back £y Siop sch  Home Gesch Fevmim  Hwioy  Chewel | Fulsoeen  Wal Fnt |
] =
Display Helle Werld
(@ ] e AV M penPodal Boounenis ieanr | g.wt'nrnlu i,

whose HTML looks like this (remember that weblet commands are case-insensitive:

-->Display Hello World<--

Thefollowing is displayed:



ﬂ -4 prnPostal ecumanthCensbngWaebhletcilrmp band - Hicioeob inlmme Fapioon
B Edt Uew G Fpoiles Hep [ & |
. 0= .9 9 &84 B & 9 R dJ 8B J
Bk | Skap Fstesh  Home Sapch Fevodes  Hisloh - Chaonsls - Fuliciees Ml Pt
Aeichans [ El|
|
Hello World!
= =
£ 5 Wy G i

To makethisweblet, aweblet descriptor .weblet file and a Weblet Server Pages.wsp file need to be made.
HelloWorld.weblet:

<?xml version="1.0" ?>

<weblet service-weblet="true" >

<command full-command="display hellowor|d" embed="Heloworld.wsp" />
</weblet>

HelloWorld.wsp:

<% @ language="javascript" >

<H1>HdloWorld!</H1>

The service-webl et attribute in HelloWorld.webl et establishes that thisweblet is a service-weblet, and that
there will only be one copy of thisweblet on the site. If anyone typesin the command -->display hello
world<-- then thisweblet will be called. The <command> tag establishes that the "display hello world"
command should invoke and run the WSP file Helloworld.wsp.

Notice that HelloWorld.wsp does not need to check what command called it. HelloWorld.jsp could have
been written as

<%@ | anguage="j avascri pt">

<% if (Webl et Command. full_conmand == "display hello world") { %
<H1>Hel | 0 Worl d! </ H1>
<%} %

This accomplishes the same thing as the previous version and is not necessary unless desired. If we wanted
to make amore complex version of Hello World that displayed Goodbye World when the commands



"display Goodbye World" or "Goodbye World" are called, and displays "Hello World" when the commands
"display Hello World" or "Hello World" are called by the user, then we could do it asfollows:

HelloWorld2.webl et:

<? xml version="1.0" ?>
<webl et service-weblet="true">

<command ful |l -command="di splay hello world, hello world"
enbed="Hel | oVor |l d. wsp/ >

<conmand ful | -command="di spl ay goodbye worl d, goodbye worl d"
enbed="GoodbyeWsr | d. wsp"/ >
</ webl et >

When "display hello world" or "hello world" are called, HelloWorld.wsp is embedded:
HelloWorld.wsp:

<%@ | anguage="j avascri pt" %
<H1>Hel | o Worl d! </ H1>

When "display goodbye world" or "goodbye world" are called, GoodbyeWorld.wsp is embedded:

GoodbyeWorld.wsp:

<%@ | anguage="j avascri pt" %
<H1>Goodbye Worl d! </ H1>

Dividing the commands into two seperate filesis an easy, quick, and reusable way of making the Webl et
Server Pages, though they could be put into onefile asfollows:

HelloWorld2.webl et:

<? xm version="1.0" ?>
<webl et service-webl et="true">

<command ful | -command="di splay hello world, hello world"
enbed="Wor | d. wsp"/ >

<command ful | -conmand="di spl ay goodbye worl d, goodbye worl d"
enbed="Wor | d. wsp"/ >

</ webl et >

World.wsp:

<%@ | anguage="j avascri pt" %

<% if (Webl etCommand. full _conmand == "di splay hello world" ||
Webl et Conmand. ful | _conmmand == "hello world") { %

<H1>Hel | o Worl d! </ H1>

<%}

el se if (Wbl et Comrand. ful | _command ==
"di spl ay goodbye world" ||

Wbl et Command. ful | _command == "goodbye worl d") { %
<H1>Goodbye Worl d! </ H1>
<%} %

We could add a property to thisweblet that underlying Weblet Server Pagesfiles could use to format
themselves asfollows:



HelloWorld3.webl et:

<? xm version="1.0" ?>
<webl et service-weblet="true">
<property name="nessage" default-val ue="some nessage goes here"/>
<command ful |l -command="di splay hello world, hello world"
enbed="Hel | oVor |l d. wsp/ >
<conmmand ful | - command="di spl ay goodbye worl|l d, goodbye worl d"
enbed="GoodbyeWsr| d. wsp"/ >
</ webl et >

HelloWorld.wsp:

<% | anguage="j avascri pt" %
<Hl>Hel lo Worl d! By the way, here's your <%=webl et.nessage %</H1l>

GoodbyeWorld.wsp:

<%@ | anguage="j avascri pt" %
<H1>Goodbye World! By the way, here's your <% =webl et.nessage % </ Hl>

We could have an automatic edit form generated for this weblet by adding an edit command to it:
HelloWorld4.weblet:

<? xm version="1.0" ?>
<webl et service-weblet="true">
<property name="nessage" default-value="sonme nessage goes here"/>
<conmand full -command="di splay hello world, hello world"
enbed="Hel | oWor |l d. wsp/ >
<conmand full - command="di spl ay goodbye worl d, goodbye worl d"
enbed="GoodbyeWr | d. wsp"/ >
<conmand action="edit" performon="this" enmbed="this.edit()"/>
</ webl et >

An edit form will automatically be generated for a user to customize the property message. Alternatively,
we could make weblet.message be inplace-editable so that if the user clicks right where weblet.message is
printed out it will turninto atiny edit field where the value can be changed:

HelloWorld5.webl et:

<? xm version="1.0" ?>
<webl et service-weblet="true">

<property name="nessage" default-val ue="some nessage goes here"
i npl ace-editable="true"/>

<command ful | -command="di splay hello world, hello world"
enbed="Hel | oWor |l d. wsp/ >

<command ful | -conmand="di spl ay goodbye worl d, goodbye worl d"
enbed="GoodbyeWsr | d. wsp"/ >

<command action="edit" performon="this" enbed="this.edit()"/>
</ webl et >

HelloWorld.wsp:

<%@ | anguage="j avascri pt" %



<Hl1>Hell o World! By the way, here's your <weblet:|NPLACE-EDI T
property-nane="nessage" ><%=webl et . nessage %</ webl et: | NPLACE-
EDI T></ H1>

GoodbyeWorld.wsp:

<%@ | anguage="j avascri pt" %

<H1>Goodbye World! By the way, here's your <weblet:|NPLACE-EDI T
property-nane="nessage" ><%=webl et. nessage %</ webl et: | NPLACE-
EDI T></ H1>

A Property Weblet - Business Card

Our next example weblet is abusiness card weblet. Thisisan example of aproperty weblet.

Thisweblet will have the following properties:
name
organization
address
slogan
role
emall
phone-number

and the following commands:
display
edit
save

This business card weblet will ook as follows when given the display command:

Business Card Weblat Edit

BaseSystem, Inc.

240 Broudumg 330
Hewr ¥ods, FIV 10033

Brad Neuberg

Wics Precident of Tedmology

] brud @byt core

Each of these propertieswill be in-place editable, so that when someone clicks on the organization name—
"BaseSystem, Inc.", an in-place DHTML edit form will instantly be embedded where the value can be
changed:



Business Card Wehlet Edit
[<b2Bases/brSystem. Inc

2640 Broatmey HIL6
Hew Yads, HY 10025
TR e i OO Create. Malmtaln. Shaw.

and if changed:

Business Card Weblet Edit
[OpenFortal

1940 Browdrey Wik6
Hew Vtk, 1Y 10025
wrangr beneryoham: com Create_ Wamtaln. Sham.

will instantly reflect this change:

Business Card Weblet Edit

OpenPortal

2240 Browdvngr M35
Hew Wedk, 1Y 10025
e s e, oot Ceate Marnizin, Sham

Brad Neuberg

When thisweblet is given the edit command (by clicking on the Edit hyperlink above), it will return the
following form which can be used by those without Dynamic HTML browsers:



Business Card Weblet

Nama: |[Brad Meuberg

drganization: |<t|38 ase{/b» System. Inc.

Address: | 2840 Broadway #336<bryMNew Yark, MY 10025 <bram
Slogan: |I2rE|Efte. Maintain. Share.

Rale: [‘u‘lce President of Technalogy

Ermail: |L1rad@|u AsEsyEIEm com

Phone-Numbear: |2] 2-853-3b02

Save

The properties and commands for the business card webl et are defined in the following weblet descriptor
file:

Business Card.webl et:

<webl et draggabl e="true">

<property name="organi zati on" default-val ue="0Organi zati on"/>

<property name="address" default-
val ue="Addr ess1l<br >Addr ess2<br >Addr ess3<br >"

i npl ace-i nput ="<textarea rows=3 col s=30>"/>

<property name="sl ogan" default-val ue="Sl ogan"/>

<property nanme="nane" default-val ue="Nanme"/>

<property nanme="rol e" default-val ue="Rol e"/>

<property nanme="email" default-value="Emil"/>

<property name="phone_nunber" default-val ue="Phone- Nunber"/ >

<standard- property name="default _input" default-val ue="<input
type=text size=42 nmaxl engt h=80"/>

<conmand acti on="save" performon="this"
enbed="Busi nessCar dSave. wsp" >

<conmand acti on="di spl ay, vi ew, save" perform on="this"
enbed="Busi nessCar dDi spl ay. wsp" >

<command action="edit" performon="this"
enbed="Busi nessCar dEdi t . wsp" >
</ webl et >

Notice that the HTML that defines the three commands for this weblet are in three seperate files. Also
notice that the save command is given twice:

Thesethreefilesare:

BusinessCardSave. WSP:
<%@ | anguage="j avascri pt" %
<l-- Save the weblet -->
<%
if (parameters.organization != null)
webl et . organi zati on = paraneters. organi zati on;
if (parameters.address != null)

webl et . address = paranet ers. addr ess;



if (paranmeters.slogan != null)
webl et . sl ogan = paraneters. sl ogan

if (parameters.paraneters !'= null)
webl et . nane = par aneters. nane;

if (parameters.role !'= null)
webl et.role = paraneters.role;

if (parameters.enmil != null)
webl et. emai| = paraneters. ennil

i f (parameters. phone_nunber !'= null)

webl et . phone_nunber = paraneters. phone_nunber;
nam ng. r ebi nd(webl et . st andar d_pr operty. nane) ;
%>

Notice how areference to the calling webl et is obtained in the WSP file by using the predefined standard
object weblet:

webl et. organi zati on = paraneters. organi zati on;

Also notice how once the webl et's new values have been stored in the weblet it is saved back into the
directory service using the exposed naming object:

nam ng. r ebi nd(webl et . st andar d_pr operty. nane);
BusinessCardDisplay.wsp:

<%@ | anguage="j avascri pt" %
<l-- Display the weblet -->
<t abl e border="0" cell spaci ng="2" cell paddi ng="3" w dt h="206">
<tr bgcol or =" #EEEECC" >
<td><font face="Arial, Helvetica, sans-serif" size="-1"
col or ="#666633" ><b>Busi ness
Card Webl et </ b></font></td>
<td align="right" w dth="26"><font size="-1">->Edit<-
</font></td>
</[tr>
</tabl e>

<t abl e border="0" cell spaci ng="0" wi dt h="300">
<tr bgcol or =" #FFFF00" >
<td wi dt h="57% hei ght="34" valign="top"><font size="5"
face="Ti mes New Roman, Tines, serif"><weblet: | NPLACE-EDI T property-
name="or gani zati on" ><%=webl et. organi zat i on%</ webl et : | NPLACE-
EDI T></font> </td>
<td wi dt h="43% hei ght ="34">&nbsp; </td>
</tr>
<tr bgcol or =" #FFFF00" >
<td width="57% ><font size="1"><webl et: | NPLACE-EDI T property-
nane="addr ess" ><%=webl et . addr ess%</ webl et : | NPLACE- EDI T></f ont >
</td>
<td valign="botton w dth="43% ><i ><font size="1" face="Arial
Hel veti ca, sans-serif"><webl et: | NPLACE-EDI T property-
name="sl ogan" ><%=webl et . sl ogan%></ webl et : | NPLACE- EDI T></font ></i ></ t d>
</[tr>
<tr bgcol or="#0066FF" >
<td wi dt h="57% ></td>
<td wi dt h="43% ></td>
</tr>



<tr bgcol or="#0066FF" >
<td wi dt h="57% ></td>
<td wi dt h="43% ><font col or ="#FFFFFF" ><b><f ont
si ze="2"><webl et : | NPLACE- EDI T property-
nane="nane" ><%=webl et . name%</ webl et : | NPLACE-
EDI T></ f ont ></ b></ f ont ></ t d>
</[tr>
<tr bgcol or="#0066FF" >
<td wi dt h="57% hei ght="24"></td>
<td wi dt h="43% hei ght="24" valign="top"><font col or="#FFFFFF"
si ze="1"><webl et: | NPLACE- EDI T property-
name="r ol e" ><%=webl et . r ol e%></ webl et : | NPLACE- EDI T></ f ont ></t d>
</[tr>
<tr bgcol or="#0066FF" >
<td wi dt h="57% ></td>
<td width="43% valign="top"><font col or="#FFFFFF"
size="1">emni |l : <webl et: | NPLACE-EDI T property-
nanme="emai | " ><%=webl et . ermai | %</ webl et : | NPLACE- EDI T></ f ont ></ t d>
</tr>
<tr bgcol or="#0066FF" >
<td wi dt h="57% ></td>
<td wi dth="43% valign="top"><font col or ="#FFFFFF"
size="1">voi ce: <webl et: | NPLACE-EDI T property-nane="phone- nunber" >
<%=webl et . phone_nunber %</ webl et : | NPLACE- EDI T></ f ont ></ t d>

</[tr>
</tabl e>
BusinessCardEdit.wsp:
<l-- Edit the weblet -->

<form nmet hod="post" acti on="?<%=Webl et Conand. t oURLSt ri ng() %" >
<t abl e border="0" cellspaci ng="2" cell paddi ng="3">
<tr bgcol or =" #EEEECC" >
<td col span="3"><font face="Arial, Helvetica, sans-serif"
size="-1" col or="#666633" ><b><f ont col or ="#333300" >Busi ness Card
Webl et </ f ont ></ b></ f ont ></ t d>
</tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Nane: </ font ></t d>
<t d>&nbsp; </t d>
<t d><i nput type="text" nanme="nane" val ue="<%=webl et. nane%"
si ze="42" maxl engt h="80"><t d>
</tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Organi zati on: </ font ></td>
<t d>&nbsp; </t d>
<t d><i nput type="text" nane="organization"
val ue="<%=webl et. organi zati on%" size="42" maxl| engt h="80" ><t d>
</tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1" >Addr ess: </ font ></ td>
<t d>&nbsp; </t d>
<td><i nput type="text" nane="address"
val ue="<%=webl et . addr ess%" size="42" max| engt h="80"><t d>



</[tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1" >Sl ogan: </ font></td>
<t d>&nbsp; </t d>
<t d><i nput type="text" nane="sl ogan"
val ue="<%=webl et . sl ogan%" si ze="42" maxl| engt h="80"><t d>
</[tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Rol e: </ font ></td>
<t d>&nbsp; </t d>
<t d><i nput type="text" nanme="role" val ue="<%=webl et. rol e%"
si ze="42" maxl engt h="80"><t d>
</[tr>
<tr>
<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Emai | : </ font></td>
<t d>&nbsp; </t d>

<td><i nput type="text" name="emmil" val ue="<%=webl et. emai |l %"
si ze="42" maxl engt h="80"><t d>
</[tr>
<tr>

<td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1" >Phone- Nunber: </ font ></t d>
<t d>&nbsp; </t d>
<t d><i nput type="text" name="phone_nunber"
val ue="<%=webl et . phone_nunber %" size="42" nmaxl engt h="80"><t d>
</tr>
<tr>
<t d>&nbsp; </t d>
<t d>&nbsp; </t d>
<td align="right"><input type="subnmt" val ue="Save"></td>
</tr>
</tabl e>
</fornp

Wrapping An Existing Portal asa Weblet — eGroups

In this example a Group weblet is created. It iscreated by taking a portion of an existing portal, named
eGroups, and wrapping eGroups so that its functionality can be reused by OpenPortal. eGroupsisa portal
that facilitates the creation of web-based groups. The language WebL is used to manipul ate the eGroups
site.

The Group weblet has the following user interface when it receives the display command:



Group Webhlet Edit

Stnew gom  Group Mame: Some Groups Mame

Trorte rienar

memhers Group Address:

= p s-::-r.nﬁfgmup@eGmups.com
i-:b:l. Foll  Group This 13 a test

LD b0 R Description:

Gronmp H

Every Group weblet has the following properties:
group name
group address
group description
group toolbar

The group toolbar property isinteresting. Itisinplace-editable, so that auser can click right on it to change
it's menu contents, and then hit save to have it instantly updated!

Group Wehlet Edit
e et Grou

F3tart new group< - p. Some Croups Name
——»Invite new members<—-— Marme:
——»4idd Group Ewvent<-- Group o
——»idd Group Polls—-— Address: somegroup@eGroups. com
--»Login to your Group<-- =] Ein P

Description:

Save

Every Group weblet has the following commands:
- display
edit
save
start new group
invite new members
add group event
add group poll
login to your group

Hereisthe weblet descriptor that describes these properties and commands:
Group.weblet:

<? xm version="1.0" ?>
<webl et draggabl e="true">
<property name="group_nane"/>
<property name="group_address"/>
<property name="group_description"/>
<property nanme="group_tool bar“ inplace-editable="true"
def aul t - val ue="



-->Start new group<--
-->lnvite new nmemnbers<--
-->Add G oup Event<--
-->Add Group Poll <--
-->Login to Groups<--"
i nput ="<textarea rows=5 col s=30>"/>
<conmmand action="start” performon="new group” enbed="G oup.wsp”/>
<conmmand action="invite” perform on="new nenbers”
enbed=" G oup. wsp”/ >
<conmand action="add” perform on="groups event” enbed="G oup.wsp’/>
<conmand acti on="add” performon="groups poll” enbed="G oup.wsp”/>
<conmand action="1ogin to” perform on="your group”
enbed=" Group. wsp”/ >
<commmand action="di spl ay” performon="this” enbed="G oup.wsp”/>
<command action="edit" performon="this" enbed="this.edit()"/>
<conmmand action="save" performon="this" enbed="this.save()"/>
</ webl et >

All of the commands funnel into Group.wsp, which does the actual checking of which command was
requested:

Group.wsp:
<%@ | anguage="webl " %

<!-- Define all functions -->

<% var startGoup = new fun()

var page = CGetURL("http://ww. egroups.com |istmn”, [.
met hod="di spl ay_startnewlist” .]);

/1 mani pul ate HTM. here
end;

var inviteMenbers = new fun()
var page = CGet URL("http://ww. egroups. com G oupMenber sPage",
[.
met hod="performActi on", | i st Name=webl et. group_nane, sel ectedView="al |l ", ne
wivenber Name="", Butt on_I nvi t eNewVenber ="1 nvi t e+thew+nenber".]);

/'l mani pul ate HTM. here
end;

var addEvent = new fun()
var page = Get URL("http://ww. egroups.comcal", [. nmd="a",
i st name=webl et. group_nane .]);

/!l mani pul ate HTM. here
end;

var addPol|l = new fun()
var page = Get URL("http://ww. egroups.comvote", [. nd="a",
i st name=webl et. group_nane .]);

/1l mani pul ate HTM. here
end;



var login = new fun()
var page = Get URL("http://ww. egroups. cont');

/'l mani pul ate HTM. here

end;
%>
<l-- Handle all commands -->
<l-- Start new group -->
<% if (Webl etCommand. full _conmand = "start new group")
start Group();
end;
%>
<l-- Invite new nenbers -->
<% if (WebletCommand.full_command = "invite new nenbers")
i nviteMenbers();
end;
%>
<l-- Add Group Event -->
<% if (Webl et Command. full _conmand = "add group event")
addEvent () ;
end;
%>
<l-- Add Goup Poll -->
<% if (WebletCommand. full _conmand = "add group poll")
addPol | () ;
end;
%>
<l-- Login to your Goup -->
<% if (WebletCommand.full _conmand = "login to your group")
[ ogin();
end;
%>

<l-- Display this-->
<% if (Webl et Command. full _conmand = "display this") %
<t abl e border="0" cell spaci ng="2" cell paddi ng="3" wi dt h="206">
<tr bgcol or =" #EEEECC" >
<td><font face="Arial, Helvetica, sans-serif" size="-1"
col or ="#666633" ><b>Gr oup
Webl et </ b></font ></td>
<td align="right" w dth="26"><font size="-1">->Edit<-
</font></td>
</tr>
</tabl e>
<l-- sinplified HTML -->

<t d><%=webl et . gr oup_t ool bar %</t d>



<t d>Group Name: </td>
<t d><%=webl et . gr oup_name% </td>

<td>Group Address:</td>
<t d><%=webl et . group_address% </td>

<td>G oup Description:</td>
<t d><%=webl et . group_descri ption% </td>
<% end; %

Note that not all of the WebL script to manipulate the eGroups HTML isin the functions above.



Introduction to Security in the Weblet Foundation

Vision: Support OpenPortals that are completely open or completely closed, and
everywhere in between — and let the users decide which they want through an easy
interface.

OpenPortal allows usersto create Sites. One OpenPortal server can have several Sites, al below atop-
level root. Each Site can also have multiple Areas beneath it.

Top-Level
Root
Site Site
Area Area Area

Each Site and Area can define general policies on what kind of Easy Command Language a user can
execute when within them. Within each Site Users can have Roles, such as Editor, Owner, Member, and
Guest. Within each Area and Site a user'sRoles can be used to either restrict or enable ECL commands.

Site Area Role/User ECL Command
Linux Site Main Area Owner Can edit all

The table above shows how one can restrict or allow ECL commands based on Roles, Users, Areas, and
Sites. In thisexample any user who has the Role of Owner in the Main Area of the Linux Site can edit
everything. The next table shows more examples of restricting commands based on roles and users. Inthe
first line the user Paolo de Diosis given permission to edit everything (" Can edit all") in the Discussion
Area. Inthe second line a default security setting is set for everyone ("Default for Everyone™) so that
everyone cannot edit anything. Permissions are enforced in the order they are given, so that permissions
higher in the table below are enforced and can over-ride lower permissions.

Site Area Role/User ECL Command
Linux Site Discussion Area Paolo de Dios Can deleteall
Linux Site Main Area Default for Everyone Cannot edit all

Sites and Areas can hold other weblet containers, but cannot hold nested Sites or Areas. They can also set
policies on whether children Areas, weblet containers, and weblets can over-ride the security settings of
their parents. For example, in the table below anyone who has the role of being Owner in every Areain the
Linux Site can change children permissions of sub-Areas or weblet containers, while the Default for
Everyone s set so that the everyone cannot set Area permissions but can set aweblet container's
permissionsin the Discussion Area.

Site Area Role/User ECL Command

Linux Site All Owner Can set area permissions
Linux Site All Default for Every one Cannot set area permissions
Linux Site Discussion Area Default for Everyone Can set weblet container

permissions



Weblets and weblet containers can also have their own security policies attached to themselves.
A web-based user interface is used to set these policiesfor each Area, Site, weblet, or weblet container.

They all have the same general form, an example is shown below for setting the properties of a Site named
Linux Site;

Limux Site Security

set sacurily for area ‘33

=8t sacurity for sda '
In Ithis site _‘ﬂ |Evur'_rune E |r|:an _:J creale webleis thal ovesride parent's seltings _*:I
Md' Dther. JALESERAL ive ECL Cosmand

Securtty settings for this ste m order of power:

In tha Discussion Araa Editors can clone all weblets =]
In the Main Area Guests cannot delete all weblels

In this site Membears can adit "My Business Card”

T

=

Linux Sie User Holes

By defanlt, all users are | Owhies EI

Eales:

Chrigtoper Tse is an Editor
Julio Hershberg 5 an Eddor
Jane Paland 15 3 Marmber
Bryan Pitis 15 a Mernber

Romove | Sww | Add] _Change |

Eirad Neuberg is an Chmar j

FEirad Meuberg ﬂ i£ mil}ﬂncr _:!

The user interface has two sections; atop section in which security settings are set by creating the
appropriate phrase from pull-down menus, and a bottom settings where all the security settings for the site
arelisted. Thereisalso abottom section for assigning users different Rolesfor Sites. For example, in the
screenshot above the top section has the following security phrase spelled out from the pull-down menus:

In this site Everyone can set security for area



These new phrases can be added to the site by hitting the "Add" button, and the new phrase will be added
after whatever phrase was highlighted in the lower section.

The pull downs for the top-down section are as follows:

Linux Site Securtty

sei sacuriy for anea ﬂ
set secunty for site

In 1'."|'. it 3 |_ el 3 [TB crisate wiblels that ovemde parents sefings ﬂ
Everone B
Mo one cannot O | Adbemative Webleal Command
the Main Area lust Bde T
thix Ciacussion Area
the Membars Aréa Owiniais
E ditors
Membears
Guests
Brad Maubarg
Faolo de Dios =

In the upper right portion of the user interface isascrolling list that has all possible ECL commands
enumerated (i.e. "set security for area”, "set security for site", etc.). The ECL commands which can have
security set on them are as follows, with descriptions where appropriate.

set security for area

set security for site
These two commands give someone permission to set the security properties for an areaor asite.

If someoneisallowed to set the security, aform similar to the ones above is returned.

create weblets that override parent's settings
Thisgivesauser permission to create awebl et that can override the weblet's parent security,
possibly allowing more permissive or restrictive use of the weblet then the parent would provide.
For example, using this setting would allow someone to create an editable Article weblet in an
areawhere nothing can be edited.

assign all roles

assign Omer role

assign Editor role

assign Menber role

assign Guest role
These five commands gives a user the power to assign rolesto other usersin an areaor asite. For
example, auser could be given the power to assign the Member role to anew user.

other (fill in command in box bel ow)
This selection is used for typing in ECL commands that have not been enumerated. Thisis
commonly used for setting ECL commands on individual weblets (i.e. edit "My Business Card").

do everything with all weblets
Thisgivesauser freereign over all webletsin an area, though this does not give them permission
to change asite or area's security settings or to assign roles.

edit all weblets

view all weblets

delete all weblets

clone all weblets
These ECL commands give auser permission to run edit, view, delete, or clone commands on any
webl et.

set security for all weblets



Thisallows auser to change the security properties of aweblet; note that this does not include the
ability to change the security permissions of the area or site.

create all weblets
create Business Card Wbl et
create Normal Page Wbl et
create Article Wbl et
create Tool bar Wbl et
Every available weblet is enumerated and a 'create’ option is put into the list. Thisallowsoneto
restrict the creation of certain types of weblets to certain users.
do everything with all Business Card Wbl ets
edit all Business Card Wbl ets
view all Business Card Wbl ets
del ete all Business Card Wbl ets
clone all Business Card Wbl ets
nmove all Business Card Wbl ets
set security for all Business Card Wbl ets
do everything with all Nornal Page Wbl ets
edit all Normal Page Wbl ets
view all Normal Page Wbl ets
del ete all Normal Page Wbl ets
clone all Normal Page Weblets
move all Normal Page Weblets
set security for all Normal Page Wbl ets

For each type of weblet all possible commands that can be run on thisweblet is enumerated.
Above are two example enumerations for Business Card Weblets and Normal Page Weblets.

The bottom portion of the security form shows all the security settings for the site. Three buttons can be
used to manipulate these: 'Remove’, 'Save', 'Add', and 'Change’. Hitting Remove removes a highlighted
security setting from both the client and server. Hitting Save saves amodified ECL command and all
modifications. Hitting Add causesthe ECL command that has been specified in the top-portion of the user
interface to be inserted into the bottom portion. Hitting Change loads the selected ECL command into the
top-portion.

Thereis also abottom section for assgning users different Roles for Sites. The form to do thisislocated at
the bottom of the Site form above. The default role for all users can be set with thisform. Rolesare listed
in alist-box, and can be Removed, Saved, Added, and Changed by clicking on the appropriate buttons and
selecting from the lower pull-downs (i.e. "Brad Neuberg" isan "Owner").



Theform for setting an area's security policies |ooks similar to the site security form:

Discussion Area Secu H‘f

=61 sacuty for araa H
creale weblels (hal cveride pasent's sellmgs
In  the Discussion Area | Everyone =] [ean =] Jotner ill m command i box below) =
MI Giher: [RIEETRAT IVe ECL Command

Secunty setangs for thes area in order of powwer:

I the Discusssan Anea Editars can clane all weblets =]
In the Discussion Amea Evaryone can view all weblets

=
Remove | Save | Change |

All that is different isthat the Areais already restricted and the ECL command 'set security for site' is
removed upper right box. Also, Areas cannot have their own assigned roles; roles are only assigned from

Sites.

Weblet Containers also have their own security properties form:

Wehlet Contalner Security

créale wiblels thal ovemde thes conlainer's sellmgs g
ciher ({ill in command in box belos)

H e =3 =

In this container |Everyane

MI Othar Ihltcrnu.tn-l: ECL Command

Securgy settmgs for this area m order of power

In thiz weblet conlainer Editors can clone all weblats =]
In {his wablet conlaingr Everyane can view all webles

|
Ramave | Sava| _Chanps |

The upper-right ECL command box includes all the same commands as the Site box, without the 'set

security for area’ and 'set security for site' commands.

Weblets have the simplest security settings:



Business Cand Wehblet Sacurity

da awerpthing to this veanlet _‘.;J

adit thigweblet
In the Discussion Area | Everyone E fean Bl e micwasiet =

add]

Security settmgs for ts weblet in order of powes:

In the Discussion Area Editors can clona this weblet =]

-]

Renvove I SMI Change

The upper-right ECL command box has the following commands:

do everything to this webl et
edit this webl et

view this webl et

del ete this webl et

clone this webl et

set security for this weblet

Easy Command Language Security Format

Security settings are converted and stored as ECL commandss. This makesit possibleto simplify and
encapsul aiemteractmg portions of the Weblet Foundation. Thisisused in the following sub-systems:
communication between client and server when the user is setting security properties
using the site security form, the area security form, the webl et security form, and the
weblet container security form
serializing aweblet's security settingsto aflat text filein alocal file system through the
JNDI
interaction on the server side between the JSP files for the site, area, weblet, and webl et
container security forms and the actual javaweblet objects



These interactions are shown in the diagram below:

<<HTML>>
SiteSecurity
Settings
Form.html
Client
add In the Main Area
button Guests cannot
pushed delete all
weblets
<<JSP File>> <<java class>>
SiteSecurity SomesSite:Site
Settings
Form.jsp
initializes
Server In the Discussion Area Editors can clone all weblets Server

In the Main Area Guests cannot delete all weblets
In this site Editors can edit all weblets
In this site Members can edit "My Business Card"
serializes into

<<text file>>

In the Discussion Area Editors can clone all weblets
In the Main Area Guests cannot delete all weblets
In this site Editors can edit all weblets

In this site Members can edit "My Business Card"

Server

This section detail s how security permissions are transformed into security ECL commands.

Security ECL commands are pretty much straight translations from the security form:



set security for site
% [thlssile 3 [Euewne EI |¢:an EI creats weblets thal ovemde parent's settings ;l

becomes the security ECL command:
Inthis site Everyone can set security for area
This becomes the command-URL (if the user is Brad Neuberg):

http://www.openportal .org?command=In+thistsite+Everyone+can+set+security+for+area& username=Bra
d+Neuberg& site=Linux+Site& weblet_name=/Linux+Site& weblet_type=Site& openbasis_version=2.0

The context -free grammar of security ECL commands are asfollows:

SecurityWebletCommand

SecurityWebl et Command ::=In Location Identity Perm ssion
Webl et Command

L ocation

Location ::=this site | All-areas | this weblet container

All-areas |

Al'l-areas ::= areal | area2 | area3 ... arean ‘

Discussion: If an area name does not begin with the word "the" or "The", then an optional "the" can be
appended before this name (i.e. "the Discussion Ared"). The security forms do thiswhen they are set. If
the area hame already has "the" or "The", then the security forms do not add the "the" or "The." For
manually entered security ECL commands the "the/The" can be dropped (i.e. "In Discussion Area....").

Permission
Perm ssion ::= can | cannot
| dentity
Identity = Everyone | everyone | No one | no one | Just nme | just
me | Owmers | owners | Editors | editors | Menbers | nenbers
| Guests | guests




WebletCommand

Webl et Command :: = A valid ECL conmand

Discussion: To avoid recursion SecurityWebletCommands cannot be used here, except for "set security for
area’ and "set security for site” which are actually not security ECL commands but are normal ECL
commands.




Weblet Foundation Security: Architecture and Design Overview
Iteration 1

In order to maintain a secure web environment, security features must be implemented to authenticate users
and webletsin order to verify that al weblet and ECL command operationsare from trusted users. 1n order
to manage security auditing/validation etc, the Weblet Foundation will implement a Security Service as
addition to its service layer architecture. Security Services consists of two main components, the Security
Manager and the Security Agent.

Security Services
Security Manager
A A A A
Agent Agent Agent Agent

Essentially, the Security Manger isresponsible for creating policies, by mapping object sources (weblets,
users, other sites and areas) to sets of permissions for its Security domain, and then dispatching security
agentsto user or weblet objects to enforce these policies. Thus, there will be no central choke point for
security enforcement that can be responsible for DoS (Denial of Service) attacks or spoofs, but still
providing a centralized | ocation for the administration of system polices. Security agents are an
enhancement of aticket based authentication system. Instead of simply encapsulating a single policy
between two objects, security agents encapsulate all operations to validate communications between a
group of objects given a collection of policies or permissions. It keeps weblet and user objects lightweight
by delegating additional security logic to another component that can be easily maintained and changed.

In order to ensure that all webletswill be under the auspices of the security manager, aweblet container
must register itself with the security manager. The security manager would then assign a security agent to
the weblet container.

Weblet
Webl et Container Agent
Container
/
Agent J /
. /
Security Manager

These agents will be responsible for enforcing security policies for weblets belonging to the same set.



Weblet Container
Webl et
Security manager
‘//
Sec. agent «\\;
User Object
User object

The security manager will keep track of and manage these agents. It will manage security agent lifetimes
and operations for logging and auditing. This architecture can even be extended to support session tracking

Security Manager:
Keepstrack of object sources
Manages security agent lifetimes and activities
I nstanti ates/assigns agents to specific domains

Secunty Agent:
Queries weblets/webl et containers/sites in itsimmediate protection domain
Maintains a permissions collection
Maintains apolicies collection
Enforces security policies
Has the same life cycle asits container/site

H|gh Risk Areas/Open Issues:
Relatively complex implementation
Performance/scalability issues. Security should not take arelatively large portion of processing

time.
Client side authentication issues, e.g. sending passwords over the Internet.
o Options
= SSL30

= Client certificates
= Baseb4 encryption



Weblet Foundation: Security Services Architecture
Iteration 1

The security service architecture is modeled after a security manager and agent design
pattern, whereby a security agent enforces all security policies applicable to the immediate
objects in the site or area level.

In order to make itself known to the security system, the weblet container must register itself with
the security manager. The security manager queries the weblet container/site for its security
properties and then instantiates and assigns a security agent to that webl et/site container

Weblet Container Security Manager
Q}name

registers, tracks, assigns agents ;
Q}i d %agentLlst
Eother property
ESwebletList

‘.’getWebIetSecurityProperties()
‘.’assignAgent()

0.1p

0..n

Security Agent

&containerlD
EwebletList
&permissionsCollection

Q}allowOp

®getChildProperties()
‘newPermission()
".'checkOperation()
®getChildren()
’.’getPermission()

The security agent is responsible for maintaining all the weblets in its protection domain. It
queries al weblets added into the container for security properties and instantiates and maintains
new permission objects. These permission objects in turn establish policies associated with this
permission. In thisway, a security check can be established by first seeking an operation in the
permission list and then searching through the policy collections for an object-operation-object
mapping. For example, if auser, Paolo, attempts to edit an article weblet, the security agent will
search through the available operations in the permission list. Upon finding an edit operation, it
will search the policy lists for a"Paolo" to "article weblet" mapping. A smilar traversal is done
to change permissions and policy mappings using the get/set methods. Perhaps the only
operation that is not delegated to a security agent is the destruction of aweblet container. The
security agent in charge of the parent container/directory context handles that operation.



Weblet Container

=5name

Eid

Eother property

E3webletList

O 47 ~

/J’ ! “\\
// \
// \\
/ N\
/ \
0.. D/ \\
A \
— Weblet request cﬁ?{d weblet list
=2name \\
Bid \
E¥security propertyl \
Esecurity property2l.- \\
NS
\\ \\

| Security Agent
&containeriD

EwebletList

permissionsCoIIection
&allowOp

¥getChildProperties()
®¥newPermission()
¥icheckOperation()
¥getchildren()
.getPermission()

Policy

Permission
permission
E¥childObject
policyCoIIection

policy
&¥childobject

0..n [®setPolicy()

®setPermission()
[SgetPermission()

.getPoIicy()
.evaluate()

.newPoIicy()




| OpenPortal

System and Softwar e Ar chitectur e Description

Version 1.0.0.0

| Table of Contents

1.Introduction
1.1 Purpose
2.Architectural Analysis
2.1 Component Model
2.2 Behavior Model
2.3 Enterprise Model
2.3.1 Logical Component Classifications
2.3.2 Logical Behavior Classifications
3.System design
3.1 Design Views
3.1.1 Logical Component View
3.1.2 System Layered View
3.1.3 System Deployment View
3.2 Object Model
3.2.1 Design Component Specifications
3.2.2 Object specifications
3.3 Operations Model
3.3.1 Detailed Behaviors
3.3.2 Operations Specifications
3.4 Class Model
4.Common Definition Language
5.Appendix



| Introduction

The purpose of the System and Software Architecture Definition is to describe the structural,
relational and behavioral mappings of the different components of OpenPortal. It attemptsto map the
requirements and responsibilities of OpenPortal into its software level abstractions and structure.
Implementation specific details, such as algorithms and method specifications will be left to Javadoc source
code documentation. Thisdocument aims at concurrency with major releases of the system.

| Architectural Analysis

| Component Model

The Component Model is derived from OpenPortal’ s system responsibilities. OpenPortal consists
of four custom components that utilizes a number of design components.

Component COM-01
Defining Quality Responsible for creating and maintaining user profiles
Name User (org.openportal.user)
Attributes Contains persistent user data collection
Behaviors Represent user weblet service requests from OpenPortal
Relationships weblet, and security
Roles ProfileGenerator, user manager
Constraints
Dependencies openportal
Cardinality 1
COM-01 Relationships
] L
user provides user data to el I
(from openportal) (from org) }
|

I

|

|

Il
authentllcated by

Al

—|‘V

security

(from openportal)




Component

COM-02

Defining Quality Creates weblets and processes WSP and Weblet Command
requests

Name Weblets(org.openportal. weblet)
Attributes
Behaviors Create weblet, process WSP and weblet commands
Relationships OpenPortal, directory, security
Roles Weblet factory, weblet compiler
Constraints

Dependencies GNU JSP, JNDI, security

Cardinality 1
COM-02 Relationships

—| openportal
directory (from org)
from javax
(from javax) x .
%~ security
requests sec¢urity and (i SpEnper)
\\ directory seivices through =
links weblets\usi\ng ////
~N -~
\\\ authénticates
\—| // requests through
weblet
(from openportal)

Component COM-03
Defining Quality Mediator of requests from other OpenPortal components
Name OpenPortal (org.openportal)
Attributes
Behaviors Handle user requests, mediate service interaction
Relationships User, weblet, security, directory
Roles Request handler, OpenPortal service manager
Constraints

Dependencies JNDI

Cardinality 1




COM-03 Relationships

] ]

openportal ) . ) <<DCOM-01>>
(from org) provides directory services to > directory
(from javax)
Ve ~.
e SN
// \\
7 3 \\ .
allows age€ss to provides acgess using
// ~.
/// \\\\

s NN
_____ 1 LI/—/ SN

I mediates requests from security

fi tal
(from openportal) (from openportal)

\ |/

]

weblet

(from openportal)

Component COM-04
Defining Quality Maintainer and enforcer of security policies
Name Security (org.openportal.security)
Attributes
Behaviors Authenticate users, verify user requests, verify weblet command
directives
Relationships Weblets, user
Roles Security agent, security manager
Constraints
Dependencies user
Cardinality 1
COM-04 Relationships
————— 1 —
! !
security user

\/

(from openportal) (from openportal)
authenticates and verifies

requests from

authenticates requests to

(from openportal)




| Behavior Model

Thebehavior mode describesthe different behaviorsinvoked by exter nal actorsor componentsthat
the system must handle. It isderived from the system responsibilities.

Identifier BH-01

Name Login to OpenPortal

Trigger User submits a login and password

Description Logs user into their home area, otherwise into the public area
Pre-Condition User has a login profile

Post-Condition User gets placed in their home area page

Input ID, password

Output User home page

Refers to

Exception No user profile, anonymous login

The user is not authenticated upon first entry into the OpenPortal website. Upon entry into the main page,
the user is designated as guest and is allowed to view the public services availed by the main page. To
navigate other sites and areas listed in the openportal root, authentication may be required.

O

CheckPassword

s~
O D

Authenticate User Find User Profile

User \ / <<extaqds>> Q
O <<extdnds>> M
) O Update Session
Login User

Make New User Profile

Report Authentication Error

Place in OpenPortal Root



Identifier BH-02

Name User navigates OpenPortal site and area locations

Trigger Hyperlink

Description The user clicks on a hyperlink to follow an internal reference
Pre-Condition Target page exists, user has appropriate viewing rights
Post-Condition User is allowed to GET the requested page

Input CommandURL

Qutput HTML page

Refers to

Exception Page not found, user not allowed

The user is allowed to navigate the different sites and areasin OpenPortal provided that they have the
permissions. Usersare also assigned roles that have inherent permissions that will vary the behavioral use
case of the system. Depending on auser’srole or class, they may or may not have to be authenticated.

O

Update Session

Visit Root
<uses>> O
/ CheckiD
O\«u&s»\
%/ VisitSite O

U Authenticate User\«a‘w
ser

Report Authentication Error
S>>

Update Session



Identifier BH-03

Name Edit Weblet

Trigger User Clicks on Edit

Description Allows user to edit content, along with a weblet's properties,

including security, positional and GUI elements.

Pre-Condition

User has the proper permissions

Input Hyperlinked ECL CommandURL

Output Edit form(type of edit form dependent on permission)
Refers to

Exception Permission denied

<<exte

Edit Weblet

User

O

?xtendsf/ Upload Graphic

Modify Content O
<<us
O Save Weblet State and Properties

/Modify Properties
<<uses>>

Modify Security Permissions

©<]-/C;eck Permission

Authenticate User

<<uses

Report Authentication Error

Display Weblet

| Identifier

| BH-04




Name Add or Delete a weblet

Trigger Add or delete weblet command directive

Description Adds or deletes a weblet from a container

Pre-Condition User has the appropriate permissions

Input [add or delete <weblet name>] commandURL or
hyperlinked ECL commandURL

Output Updated container page

Refers to

Exception Permission denied, weblet not found

D
/isplay Weblet
— -

Add Weblet
/Check Permission
Update Container\ Q

<<uses>>
/- \ Authenticate User
Update Container Properties and
State :

User
Report Authentication Error
Delete Web|et\

Display Weblet

| System Design

| Design View




L ogical Component View
System Layered View
System Deployment View

| Object Model

Design Component Specifications

These Components are derived from COTS products that must be configured or modified to work with
OpenPortal .

Naming and directory subsystem for weblet persistence
JNDI (Java Naming and Directory Interface)

Lookup, search, bind, unbind

OpenPortal Hub, Weblet Manager, Security Manager
Directory manager, weblet caretaker

Should provide access to the filesystem

Java library

Processes WSP directives and scriplets
JspServiet (PolyJSP engine)

Process WSP scriplets, return HTML markup block
WSP Engine

WSP Compiler

Should only process scriplets and not JSP tags.

Java based Interpreter package with a servlet interface

Helps parse weblet command
GNU RegExp — GNU Regular Expression Library

Parse command

WebletCommand Parser

Command tokenizer

Should only return valid weblet command tokens
Java based library

Parses and interprets JavaScript
ECMAScript




Attributes

Assigned Behaviors

Relationship WSPEngine

Possible Roles Interpreter

Constraints

Implementation Java based library and interpreter
Identifier DCOM-05

Defining Quality Parses and interprets WebL

Name WebL3.0

Attributes

Assigned Behaviors Interpret

Relationship WSPEngine

Possible Roles Interpreter

Constraints

Implementation Java based library and interpreter
Identifier DCOM-06

Defining Quality Parse and process script files into XML structures
Name XML4J

Attributes

Assigned Behaviors Parse weblet descriptor
Relationship WSPEngine, Weblet Descriptor parser
Possible Roles Xmlparser

Constraints

Implementation Java based library

OpenPortal Component Specifications
1. Main OpenPortal Component Framework.

The M ain OpenPortal framework establishes the relationships between the various sub-
components that constitute OpenPortal. The OpenPortal framework is an extension of the weblet weblet
framework. It extends the generic AbstractWebletManager to add security and user management
capabilities. Itisalso the main component responsible for setting up an initial directory context that
interfaceswith INDI (DCOM-01). All user HTTP requests are handled by the RequestHandler servlet and
are processed as commandURL’s. These commandURL’s are used by the OpenPortal WebletM anager to
determine which weblet should be executed. The WebletManager also acts as a hub that allows weblets to
communicate with the security and user managers.

Identifier 0BJ-01

Defining Quality Handles user requests and outputs weblet responses

Name RequestHandler

Object Interactions Process user requests into CommandURLS
Passes requests to the OpenPortalWebletManager

States Handling request, handling response

Constraints

Component membership COM-01 OpenPortal

Refers to

Implementation Java Servlet

Identifier 0BJ-02

Defining Quality Encapsulates user request and its context




CommandURL

0BJ-01 RequestHandler

OpenPortal

Java class object

Manages user requests to weblets and mediates weblet
requests to the user and security managers

OpenPortalWebletManager

Request Handler, WSP Engine, ECL Engine, User Manager,
Security Manager

Openportal, weblet

Java class object

BjsecurityAgents : Hashtable

CommandURL
(from weblet)
command
eblet <<servlet>>
site OpenPortalRequestHandler
area (from openportal) <<Interface>>
s [req : HttpServietRequest | —~>| |RequestHander
CommandURL() <<instantiates>> | Ses : HttpServietResponse 7 |{from weblet
;Zttgz:r?mzzil(;RLo E¥parseCommandurl()
getsite() [ updateSession()
getArea()
getUser() <<Interface>>
getWeblet() InitialDirContext
(from directory)
A
I
OpenPortalWebletManager I
(from openportal) |
1
<<refers to>> getRoot() <<extends>> <<Interface>>
exec) 00— -I: IWebletManager
getCommand() (from weblet)
_ getWeblet()
/// erifyUser()
/// getUser()
UserManager -
(fromuser) > -
|~
Iusers : Hashtable
1
|| %getUser() -
SecurityManager
I ﬁ:z%ﬁ:??)sword 0 (from security)
i e
|

getUserInfo()

2. Weblet Framework

etUser()
erifyUser()
checkPassword()




The weblet framework is one of the major components of the OpenPortal system. It isresponsbile
for creating and managing weblets. It defines an interface for creating weblets and weblet containers
through the webl et factory interface. The weblet manager is responsible for mediating requeststo the

weblet factory.

Identifier 0BJ-04

Defining Quality Creates concrete weblet types
Name OpenPortal weblet factory
Object Interactions OpenPortal weblet manager
States

Constraints

Component membership Weblets

Refers to

Implementation Java class object

<<Interface>>
IWebletFactory
(from weblet) ~l

<1 ————]{(from openportal)

OpenPortalWebletManager
(from openportal)

getuser()
[ #getRoot()
-.-‘}exec()
-.:‘_i!getCOmmand()
[ ®getweblet()
1
1

OpenPortalWebletFactory

~

<<instgntiates>>

N

OpenPortalWeblet

(from openportal)

B¥containeriD

Q}containerAgent
properties : Hashtable
E¥command : Vector

<<instantiates>>

~7
/

[®i0oadwebletDesc()
[ ®saveWebletDesc()
®parseAutoMagic()

S| E®run(

7/
7/
7/
7/
7/

//<<extends>>

OpenPortalWebletContainer
(from openportal)

s/

'Q)ﬁwebletList : Vector
Iﬂ:_rsecurityAgent
E&properties : Hashtable
Bfcommand : Vector

-'fj.‘_‘_'loadWebIetDesc()
*"‘saveWebIetDesc()
parseAutoMagic()
Frun(

IWebletContainer
(from weblet)

<<Interface>>

<<interface>>
IWeblet
(from weblet)




The weblet manager is also responsible for interfacing with the ECL and WSP engines. It also maintainsa
top level initial directory context with the OpenPortal Root object.

AbstractWebletManager <<Interface>>
(from weblet) IRoot
(from weblet)
A
A
A

WSPENgine
(from weblet)

I

OpenPortalWebletManager
(from openportal)

/

L
|
|
|
|
|
|
1

OpenPortalLoginWeblet
(from security)

1\ OpenPortalRoot
1 *getUser() (from openportal)
#getRoot()
ECLEngine Hexec() Fdisplay()
(from ecl) 1/ #getCommand()
1 SgetWeblet()
¥parseCommand() 1
[#verifyCommand() 1
[ ®compileCommand() .

Fexec()
OpenPortalWeblet OpenPortalWebletContainer
(from openportal) (from openportal)
B#containeriD EfwebletList : Vector
containerAgent _Q):securityAgent
properties : Hashtable _Q}.properties : Hashtable
#command : Vector zficommand : Vector
[#loadwebletDesc() #loadWebletDesc()
[ ®savewebletDesc() %saveWebletDesc()
-.f';‘!parseAutoMagic() : ﬁparseAutoMagic()
" Srun() % run(
Identifier 0BJ-05
Defining Quality Encapsulates a specific webpage or site functionality
Name OpenPortalWeblet
Object Interactions WebletServerPage, weblet descriptor, weblet factory, weblet
manager
States
Constraints
Component membership Weblet
Refers to
Implementation Java class object, WSP and weblet descriptor files

The basic OpenPortal weblet classimplemets a standard weblet interface. Itisrequried to implement the
DirContext interface so that it can be stored in the filesystem using the INDI. Weblets consist of the




webl et base class and the descriptor used to set the properties of the weblet. The weblet may consists of

many WSP script files that embed content into webl et using the WSP engine.

<<Interface>>
DirContext
(fromdirectory)

<<interface>>
IWeblet
(from weblet)

7]
R
\ /
\ /
\
\
\ /
\ /
\ /
OpenPortalWeblet
(from openportal)
Q}containerlD
Q)containerAgent
WebletDescriptor properties : Hashtable WebletServerPage
(from weblet) sf:command : Vector (from weblet)
1 1 1
*IoadWebIetDesc()
*saveWebIetDesc()
e SparseAutoMagic()
v *run()
//
é/ééimports»
<<xml4j>>
Document
(from dom)
Identifier 0BJ-06
Defining Quality Contains other weblets
Name OpenPortalWebletContainer
Object Interactions OpenPortalWebletManager, Weblet
States
Constraints
Component membership Weblets
Refers to
Implementation Java class object, WSP and weblet descriptor files

Webl et containersimplement the basic weblet container interface. They are required to implement the
DirContext interface so that they can be stored in the filesystem using the INDI. The weblet container class
extends the webl et base class, adding capabilities for referencing and embeding weblets. Weblet
Containers utilize weblet descriptorsto initialize its properties and to determine which webletsit contains.
Embeded WSP files are are processed using the WSP engine. The weblets referenced by the container are
processed in the order they are specified in the weblet container descriptor.




<<Interface>>

IWebletContainer <<Interface>>

DirContext

(from weblet)
(from directory)

N
Lo A
N <J

\ /

\ /

\ /

: \ /
<<xml4j>> \ /
Document \\ //

f \ /
(from dom) \ y
- \ /
IS~ "
~< OpenPortalWebletContainer

<<|meLtE>> (from openportal)
~

~~JE2webletList : Vector
4securityAgent
iproperties : Hashtable

@command : Vector

SecurityAgent
(from security)

WebletServerPage
(from weblet)

"!__‘;IoadWebIetDesc()
':*:saveWebletDesc()
'!__‘;parseAutoMagic()
" ®run

WebletContainerDescriptor
(from weblet)

OpenPortal utilizes a heirarchical containment structure. These containersinclude the siteroot, asite, and
an area. These different containers extend the base weblet container class and implements their respective
container interfaces. Each container type places additional constraintsin the nesting of weblets. The

RootContainer can reference any weblet continer. A SiteContainer can only reference AreaContainers and

the weblet class. AreaContianers can only reference the weblet class.



OpenPortalWebletContainer
(from openportal)

<<Interface>>
IWebletContainer
(from weblet) 1

EBwebletList : Vector

Q}securityAgent
properties : Hashtable

=zcommand : Vector

*IoadWebIetDesc()

7

>V

<<exten5is/>>
7

4
/

OpenPortalRoot
(from openportal)

Bdisplay()
I

TL'
/
v
<<Interface>>
IRoot
(from weblet)

. ."’saveWebIetDesc()
. ."’parseAutoMagic()
run()
=
'S
L}. \x\>
\
<<extends>>
<<extengs>>
\
OpenPortalSite AN
(from openportal) \\
OpenPortalArea

\\//
<<Interface>>
ISite
(from weblet)

(from openportal)

I
I
|
|
|
|
|
|
|
.

v
/
\/

<<Interface>>
lArea
(from weblet)

Part of the standard webl et services of OpenPortal isthe LoginWeblet contained at the root level of
OpenPortal. In addition to logging usersinto OpenPortal, it is responsible for interfacing with the user

manager to create new user profiles.

Identifier 0BJ-07

Defining Quality Logs users in, interfaces with user manager to create new user
profiles.

Name LoginWeblet

Object Interactions OpenPortalRoot

States

Constraints

Component membership OpenPortal

Refers to

Implementation Java class object, weblet




OpenPortalRoot OpenPortalLoginWeblet

(from openportal) (from security)

\l/

Bdisplay() Bexec()

d

7
Y

<<Interface>>
IRoot

(from weblet)

3. ECL subsystem

Most command directives, enclosed with the“[*“ and “]” or the“—>" and “ <" delimiters, are
specified in an edit form or in the case of a security settings form, conpiled from a series of pull
down menus. Essentially, these commands pass through as either a singular block(s) of directives
or part of alarger document context.

ECL commands are parsed through the parser, and turned into expression objects so that they can be more
easily mapped into their corresponding command methods. After parsing, these expression objects are
passed to the ECL Processor for mapping to native objects. The command processor will execute the action
associated with the command. It will find the corresponding HTML that realizes the command and pass it
back through the chain of responsibility and then to the user.

In order to ensure the security of a specific command directive, the command must go through the security
agent of the current containment context before it can be executed. The ECL engine will be ableto verify
the command by asking the weblet manager to run the command URL through the security agent. If a
command directiveis verified to be safeit will be allowed to execute in the command processor.

Identifier 0BJ-08

Defining Quality Provides the interface to the parser and processor

Name ECL Engine

Object Interactions Weblet Manager

States

Constraints Command mappings are specified in the weblet descriptor only

Component membership Weblet

Refers to

Implementation Java class object

Identifier 0BJ-09

Defining Quality Parses ecl commands

Name ECL Parser

Object Interactions ECL Engine, ECL Expression

States

Constraints Can only parse commands based on the grammar defined by
the regular expression

Component membership Weblet

Refers to

Implementation Java class object




Process expression tokens into HTML markup

ECL Processor

ECL Engine, ECL Expression

Weblet

Java class object

Object version of the ECL command

ECL Expression

ECL parser,

Weblet

Java class object

OpenPortalWebletManager
(from openportal) ECLEngine
1 1 (from ecl) <<Interface>>
N Ry e —— 0~ IECLENgine
exec() [®parsecommand() =7 |(from ecl)
getCommand() )
erifyCommand()
getweblet() compileCommand()
erifyUser() Vi P <
getUser() / 1 1\
/ \
/ \
/ \
/ \,
/ \\
s N
<<Interface>> —7 <<Interface>>
ECLParser BCLProcessor ~~_| IECLProcessor
IECLParser </-|'_____ ) | (from ecl) ———1 >>
(from ecl) ~< ( rom ec) (from ecl)
7 \
/ \\
/ \
/ <<in§¢antiates>>
\
/ \
<<imy6rts>> \
/ \
/ \
| /ﬁ \
¥ \
\
RE \)J
(from regexp) ECLExpression

(from ecl)




4. W SP subsystem

The WSP engineis an interface to PolyJSP engine (DCOM-02). It isresponsible for passing
“.wsp” filesfor processing and receiving the results for the weblet manager. It conformsto the WSPENngine
interface for providing WSP services to the weblet manager.

Interfaces with PolyJsp engine for wsp file processing

WSPEngine

DCOM-02 PolyJSP
OpenPortalWebletManager

Weblet

Java class object

OpenPortalWebletManager
(from openportal)

getUser()
getRoot()

exec()
getCommand()
getWeblet()

<<Interface>> WSPEngine <<DHTML>>
IWSPEnNgine <:J- __________ (from weblet) S PageMarkup
(from weblet) (from weblet)

T

[

[

I
<<extehds>>

[

o
\/
JspServlet
(from jsp)

T PolyJSP Engine L
<<COTS>>

/
7
I 7




5. Security Services

The security service architecture is modeled after the master and slave design pattern, whereby a security
agent enforces all security policies applicable to the immediate objectsin the site or arealevel.

In order to make itself known to the security system, the weblet container must register itself with the
security manager. The security manager queries the weblet container/site for its security properties and
then instantiates and assigns a security agent to that webl et/site container

The security agent is responsible for maintaining all the webletsinits protection domain. It queriesall
weblets added into the container for security properties and instantiates and maintains new permission
objects. These permission objectsin turn establish policies associated with this permission. Inthisway, a
security check can be established by first seeking an operation in the permission list and then searching for
amatching user-to-operation mapping. A policy fileis also used to determine which permissions are
mapped to a particul ar weblet.

For example, if auser, Paolo, attempts to edit an article weblet, the security agent will search through the
available operationsin the permission list. Upon finding an edit operation, it will search the policy listsfor
"Paolo". A similar traversal is done to change permissions and policy mappings using the get/set methods.
Perhaps the only operation that is not delegated to a security agent is the destruction of aweblet container.
The security agent in charge of the parent container/directory context handles that operation.

Identifier 0BJ-13

Defining Quality Manages security agents

Name Security Manager

Object Interactions OpenPortalWebletManager

States

Constraints

Component membership Security

Refers to

Implementation Java class object

Identifier 0BJ-14

Defining Quality Enforces security policies for a weblet container
Name Security Agent

Object Interactions Security Manager, OpenPortalWebletContainer
States

Constraints Can only enforce the policies that it is defined in the policy file.
Component membership Security

Refers to

Implementation Java class object

Identifier 0BJ-15

Defining Quality Maintains a set of permissions for a given command
Name Permission

Object Interactions SecurityAgent

States

Constraints

Component membership Security

Refers to

Implementation Java class object




HttpSession
(from http)

Maintains a permission to code source(weblet and weblet
container) mapping

Policy

Security Agent

Security

text

<<Interface>>
ISecurityManager
(from security)

//\\ <<Interface>>
A ISecurityAgent
(from security)

LT
|
|
|
|
|
|
1

(from security)

SecurityManager

securityAgents : Hashtable

<<refers to>>

SecurityAgent

.putVaIue()

User
(from user)

.User()

(from security)

Permission
(from security)

Policy
(from security)




6. User Manager

The User Manager is responsible for creating and maintaing a collection of users that have access to
OpenPortal. It implementsthe user manager interface. New user profiles are created using the
UserProfileGenerator class.

Manages the collection of user objects

User Manager

OpenPortalWebletManager

Can only be accessed through the weblet manager

User

Java class object

Generates user profiles

UserProfileGenerator

UserManager, User

Only create profiles based on userlD and passwords
Only accessible by the User Manager

User

Java class object

Represents user information

User

User Manager, UserProfileGenerator

Only stores basic information about a user. 1d and password
only

User

Java class object




<<Interface>>

IUserManager
<

(from user)

HttpSession
(from http)

UserManager
(from user)

users : Hashtable

L\

<<refers to>>

getUser()
checkPassword()
indUser()

getUserInfo() 1

A\
O 1

—_—_—————

User |7
(from user)

.putVaIue()

\VJ

Suser()

UserProfileGenerator
(from user)

createUser()
S¥saveUser()

1 0.* -




| Operations Model

Operations Specifications

1. Initial Accessto OpenPortal

OpenPortal : OpenPortal req : Http |1 session : Http command : I usermar : | webletmgr : | root : Open response :
RequestHandler ServletRequest; Session CommandURL | Lgs_emll_arf_ggj OpenportEI_JI PortalRoot HttpServlet
|
1 )
getWriter()
:/| 1
]
getSession
~>r!1 create session
I 1 Get L
| I anonymous
| | user class
Is | .
_
! I _
| |
L
T getUserL),/’/ R
getUser()
Place AN i
Anonymous I
User identifier I
object into the L
session TS
T~ tvalug()
alug
i . Place command url A
h into session object ]
___pa.[?eCommandU 1) -
lee—— 1 -
CpmmandURL( ) 7
= -
-/Lj////
setCommandURL() _— i
="__ s Display Root index
- ”|| by fi X
o L page by first getting
- HTML of page
putvalud() ——"" L Pag
- 11
Request Root Site AN T ////
from Weblet el
r
Manager |[T————0_ 4 petSite(Root ) -
______ g e
=~
P |
7 |
_ o
i —
dlspla! L
!l
|
|
|
LI
Output HTML I
] printin()
=15
[
L
|
|
|
|
'

2. User Login (Weblet Access)




If usermgr : Il response : HttpServlet
I 1]
i

session : webletmar : security :
Response

requesthandler : command : | login : Open I req : Http
OpenPortalRequest CommandURL | PortalLogin |ServletReguest HttpSession OpenPortal SecurityManager 0| UserManager
|
I
| get
L
get !..I
11
Get the target P
Command weblet specified in
= Ti r the commmand
. URL
setCommand | 7
RE— /
. /
exec(Command . /
//
gey
__I__I
< ——
gxec(Command get user from
- user manager
and check
T
get i T |
- 1 Verify the B /
‘T username and /
getParameter( | password |
_______:;,I.i |
o V% Il
7 |
’ /
verifyUs,
yus verifyUser( ‘}
. ggt
’ find
|
. <—-
Return result up the chain % )
of responsibility I ———¢peck
| <i———
! :
\
\
\
\\
) \ L
\\ I
. T I
\ | |
\ | |
\ | |
A | |
\ H i
|
|
_____ J I
Redirect identified P
user back to the |
OpenPortal root with |
putValue( - authentication result |
A} 1 11— |
= — i
/////
L—
\ ) _ -
Update the ™ pri t"i//
session object 1
with username =
|
i L
| L |
| | |
| | |
| | |
| | |
| | |




3. New User (Creating a new user profile)

request : Open |

res : Http
Servlet

—_

H] H T
command : || req : Http | webletmgr : OpenPortal | usermgr : | profilegen : UserProfile newuser : User
PortalRequest | commandURL |l ServletRequest WebletManager | UserManager I Generator
= N — 1 R L ———=— =, ] =
|
getSessgion( ) I
- II I
parseCommandUWrl() [ I
.___} Create new user - |
<< from info in |
CommandURL( ) CommandURL I
Ean PP
l,.! Get userid and P
setCommandURL( )l., password information
I— 1 from the command
[ URL object
exec(CommandURL) i
/ - /
// getCpmmand() / Create new
———— / User object
/ 1 /
bz —— /
Execute D\ createPser() / /
command URL = / /
%tUserlnfo(Comm"ndUrl) /
——Z— /
s /
createUser() Usep()
Z .
- -
: |
saveUser( ) I
. ! "
T
L Save new user I
object to
persistence layer
printin( )
-~ _/l 1
r
- il
Send notification of %
registration |
success |
|
|
1

1



| Data Model

Weblet Descriptor Data Type Definition

<IDOCTY PE WebletDescriptor [

<l-- Weblet -->

<IELEMENT weblet (property*, standard-property* , command*)>
<IATTLIST weblet draggable (true | false) false>

<l-- Weblet Container -->

<IELEMENT webletcontainer (property*, standard-property*, command*)>
<IATTLIST webletcontainer draggable (true | fal se) false>

<!-- Property -->

<IELEMENT property EMPTY >

<IATTLIST property name CDATA #REQUIRED>

<IATTLIST property default-vaue CDATA #REQUIRED>

<IATTLIST property inplace-editable (true | false) true>

<IATTLIST property draggable (true | false) fal se>

<IATTLIST property inplace-input CDATA "<input type=text size=20>">
<l-- Standard-Property -->

<IELEMENT standard-property EMPTY >

<IATTLIST property name CDATA #REQUIRED>

<IATTLIST property default-value CDATA #REQUIRED>

<IATTLIST property inplace-editable (true | fal se) true>

<IATTLIST property draggable (true | false) false>

<IATTLIST property inplace-input CDATA "<input type=text size=20>">
<I-- Command -->

<IELEMENT command EMPTY >

<IATTLIST command action CDATA #IMPLI ED>

<IATTLIST command performon CDATA #IMPLIED>

<IATTLIST command full-command CDATA #MPLIED>

<IATTLIST command embed CDATA #REQUIRED>

1>

| Appendix |




