

What Is OpenPortal?

OpenPortal is an open-source Java-server platform under the GNU Public License (GPL) and LGPL that
makes a new generation of web sites possible. These new websites are open, growable, transportable,
changeable, and interoperable. OpenPortals all share the following characteristics-

The 10 Characteristics of an OpenPortal

1. Everyone is a user.
2. Everything is changeable and editable.
3. Users can add, create, and modify sites extensively into unknown new

directions.
4. An OpenPortal is as open or closed as you like – and everywhere in between.
5. All the interesting stuff happens when openness is taken to the point of

craziness.
6. Websites become discussions, and discussions become websites.
7. The website supports its own growth.
8. The walls between web sites are broken down, and OpenPortals can

interoperate.
9. If they don't want to play, wrap 'em as components.
10. You may not even know you're on an OpenPortal (because you're not).

These OpenPortal Ten Commandments are explained below.

1. Everyone is a user.

Traditionally, most websites divide the people who make, design, and use a website into seperate
categories:

A Programmer creates the programs that run on a server. These programs help to dynamically generate the
site.
A Graphic Designer creates the html templates that help generate the site.
An Owner lays claim to the server and sets the direction of the site.
A Content Creator creates the actual stuff that is on the site.
An Editor decides which of the content created by the Content Creators is worth keeping.
An Administrator takes care of the site on a systems level.

An last, but not least, is the poor User who is left to consume the website made by his superiors.

Programmers, Graphic Designers, Owners, Content Creators, Editors, and Administrators all do their work
directly on the server side using special tools that are seperate from the website itself, and are usually
located in the same physical location:

User

N

Web
Browser

Web Server

Programmer Graphic Designer

Owner

Content Creator

Editor

Administrator

Compiler Design
Tool

Money &
Equipment

Word
Processor

Special
Tools

Shell
Access

Exhibit A - How Folks Get their Jobs Done - People on the server-side use special tools to make and maintain the website, while users use a
browser to access the website.

Users consume the website through their browsers – yummy. What happens if a user wishes to somehow
become a Programmer, Graphic Designer, Owner, Content Creator, Editor, or Administrator? Sorry, too
bad – stay in your place, behind the browser!

In the last two years portals have attempted to change this paradigm a bit with a feature known as
personalization, which usually boils down to the following three features:

• change your background color!
• personalize things with this predefined cookie cutter!
• here's some generic content from our partners!

Portals are too afraid to truly allow personalization, to truly understand what this means, because it would
involve a redefinition of what web sites are. Hence OpenPortal's appearance.

In OpenPortal everybody starts out as a User behind the browser – there is no one on the server side!

User

N

Web
Browser

OpenPortal Server

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

Then, in various ways, users gain Nametags that give them extra privileges to become the roles they wish
and desire:

User

N

Web
Browser OpenPortal Server

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

Any user, whether they are in Bangladesh or Bridgeport, can potentially gain any role. This is the power of
making everyone a user.

How do these OpenPortal users fulfill their job roles?

2. Everything is changeable and editable.

Once you begin to assume that anyone anywhere in the world can potentially lead an OpenPortal website
through a browser, you must provide some sort of browser-based tools to help these people.

A first response in providing these tools is to build specialized html web pages, dynamic html web pages,
or java applets that act on the web site, just like how in the old model graphic designers and programmers
used design tools and compilers seperate from a web server to modify a web site:

Graphic Designer

Design
Tool

separate from
and acts on

Graphic
Design

Tool (ex.
Dreamwe

aver)

Web
page

Content Creator

Word
Processor

separate from
and acts on

Word
Processor

(ex.
Microsoft

Word)

Web
page

The Old Model

Graphic Designer

separate from
and acts on

Special web
page that
mimicks

WYSIWYG
design tool

Another
web
page

Content Creator

separate from
and acts on

Another
web

page

Mimicking the Old Model on the Web

N

Web
Browser

N

Web
Browser

Special web
page that
mimicks

WYSIWYG
word

processor

This approach is known as an application-centric approach. This is the PC approach – the politically
correct Personal Computer.

OpenPortal is different. It takes a nod from technologies like OpenDoc that put the focus on documents
and not on applications. In OpenPortal everything is a document. These documents are known as weblets
because they live on the web. There are weblets that represent every type of document you can imagine:
Business Card weblets, Article weblets, Comment weblets, Toolbar weblets, Poll weblets, and even weblets
that represent the User and the Site itself:

Business Card Weblet

Article Weblet

Poll Weblet

Not only does a weblet encapsulate a document type, it also includes all the tools necessary to modify and
change that weblet. You can imagine the weblet including a miniature editor customized just for that
weblet. This is the heart of the document-centric approach – the focus is on documents, not applications.
Applications are ancillary to documents and embedded within the documents themselves. For example, the
diagram below shows how a Business Card weblet includes a tiny editor inside of it that can be invoked by
clicking on an Edit hyperlink:

Note that even while OpenPortal provides a new way to change weblets and web pages through browsers, it
does not necessarily foreclose the old way of doing things. We Embrace and Extend those as well ;)
OpenPortal caches all web pages, weblets, and templates as flat text files on the server-side, directly
mirroring the OpenPortal web-site into the filesystem, so that it can be administered by perl scripts, text
editors, graphic design tools, etc. by those lucky-enough to be on the server-side.

3. Users can add, create, and modify sites extensively into unknown new
directions.

Remember that OpenPortal is not just about editing specific parts of a website – it is about letting users
build a website into entirely new directions unforeseen by the original web-site creator. To support this,
weblets need to be more than just editable – they need to be addable, removable, and createable by users
across all of an OpenPortal site. Easy Command Language (ECL) is the tool that makes this possible. ECL
is a simple command-language that allows a user to directly issue commands to an OpenPortal server. ECL
not only lets power-users manipulate weblets, but it also provides the tools necessary to build user-
interfaces that can manipulate weblets for beginning users. In future versions of OpenPortal ECL will be
hidden to everyone but the power-user by more sophisticated dynamic html and dynamic html graphical
user-interfaces.

The concept behind ECL is that users tell an OpenPortal server what they would like to do in plain English:

• Edit this weblet
• Display my business card
• Add new article
• Login
• Display all members
• Delete this weblet

There are two ways in which ECL commands are issued by the user, either by clicking on ECL hyperlinks
or by issuing ECL commands in the edit form of a weblet.

Issuing ECL Commands by Clicking on Hyperlinks

ECL commands are “hidden” behind OpenPortal hyperlinks:

so that when a user clicks on the hyperlink the associated ECL command is sent to the OpenPortal server:

Issuing ECL Commands in the Edit Form of a Weblet

ECL commands can also be entered by the user into edit forms by surrounding the ECL command with
double brackets:

or by surrounding the ECL command with arrows:

Double-brackets instructs the server to run an ECL command right when the Save button is hit. In the
example above:

when the user clicks the Save button, the add Business Card Weblet ECL command will be run by the
OpenPortal server and the results of the command will be embedded in the web page, which in this case is a
new business card weblet:

Surrounding the ECL command with arrows instructs OpenPortal to automagically hyperlink this command
when the web page is returned and to run the ECL command when the user clicks on it. In the example
from above:

when the user clicks on the Save button, OpenPortal does not execute the ECL command but automagically
hyperlinks it instead:

when the user clicks on the hyperlink then the ECL command is run:

With these two forms of ECL users can build an entire user interface:

When saved this page looks as follows:

When these links are clicked on then the ECL command is performed. For example, if the user clicks on
the link Add Business Card Weblet Here, a new business card weblet is added:

It should be mentioned at this point that weblets don’t play alone – they are usually grouped together in a
weblet container. A weblet container is just a weblet that supports adding, removing, and creating new
weblets inside of it. A good example of a weblet container is the Normal Page Weblet Container. This is a
weblet that can hold other weblets and displays them on a single web page:

Normal Page Weblet View Edit Clone Delete

These are the weblets on this page:

Business Card Weblet Edit

BaseSystem, Inc.

2840 Broadway #336
New York, NY 10025
www.basesystem.com

 Create. Maintain. Share.

 Brad Neuberg
 Vice President of Technology

 email: brad@basesystem.com
 voice: 212-853-3602

Business Card Weblet Edit

The OpenPortal Project

www.openportal.org

Where websites become
discussions, and discussions
become websites.

 Paolo de Dios
 System Architect

 email: paolo@columbia.edu
 voice: 212-555-5555

Poll Weblet Edit
My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet

Vote
[Results | Polls]

Comments:217 | Votes:18274

Each of the weblets in the Normal Page Weblet Container can still be edited:

These are the weblets on this page:

Business Card Weblet

Name: Brad Neuberg

Organization: BaseSystem, Inc.

Address: 2840 Broadway #336
New York, NY

Slogan: Create. Maintain. Share.

Role: Vice President of Technology

Email: brad@basesystem.com

Phone-Number: 212-853-3602

 Save

Business Card Weblet Edit

The OpenPortal Project

www.openportal.org

Where websites become
discussions, and discussions
become websites.

 Paolo de Dios
 System Architect

 email: paolo@columbia.edu
 voice: 212-555-5555

Poll Weblet Edit
My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet

What happens if you hit the edit Easy Command Language hyperlink for the Normal Page Weblet? You
would get the following:

Each of the embed statements refers to each of the weblet's embedded in the weblet container. If you remove one of the
embed statements:

and hit save, then the corresponding embedded weblet will be removed from the weblet container:

Normal Page Weblet View Edit Clone Delete

New Page New Category New
 Weblet

Sample Page

 Today: Tuesday, June 28, 1999

Created by Brad Neuberg. no clones.
Last updated on Mon 12/14/1998. Created on 12/9/1998.

These are the weblets on this page:

Business Card Weblet Edit

BaseSystem, Inc.

2840 Broadway #336
New York, NY 10025
www.basesystem.com

 Create. Maintain. Share.

 Brad Neuberg
 Vice President of Technology

 email: brad@basesystem.com
 voice: 212-853-3602

Poll Weblet Edit
My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet

Vote
[Results | Polls]

Comments:217 | Votes:18274

The ECL embed command can also be used to embed weblets that have a name that are on different pages
on the OpenPortal site. Some weblets can have a name, which is usually in the title bar of the weblet:

This weblet name is usually set through the edit form. A weblet does not necessarily need to have a name;
it will usually be given a default one if none is given. Using this weblet name one can embed weblets from
all over the site on any OpenPortal page by using the embed command. As will be explained in section 4,
"An OpenPortal is as open or closed as you like – and everywhere in between," all OpenPortal pages live in
Sites which can have Areas. An OpenPortal can have multiple Sites, such as the "Linux Site", the
"Windows 2000 Site", etc., and in each Site there can be multiple Areas, such as "/Linux Site/Main Area",
"/Linux Site/News Area", "/Windows 2000 Site/Main Area", etc. When using the embed command, the
full name of the weblet to be embedded must be given. For example, let's say that on the "Linux Site" there
is an Area named "Repository Area". In this Repository Area could be a weblet named "Standard
Toolbar":

From anywhere in the Linux Site this Standard Toolbar could be embedded onto any OpenPortal page by
using the embed command:

The embed command is considered the default ECL command, so in the text field above the word embed
doesn't even have to be entered:

["/Linux Site/Repository Area/Standard Toolbar"]

When the save button is hit the Standard Toolbar is embedded in the page:

The embed command is very useful for embedding items that are used throughout an OpenPortal site, such
as the Standard Toolbar from the example above, or for referring to items when typing in a weblet, such as
referring to your business card or a seperate discussion that has occured.

Automatic hyperlinks to named weblets can also be created using the ECL arrows --> and <--. One simply
surrounds the weblet name with these arrows and OpenPortal will automatically create a hyperlink to this
weblet:

When the save button is hit the following is returned:

If a weblet is referenced that does not exist, the tiny words create this are added and hyperlinked to the end
of the unknown weblet:

When the create this hyperlink is clicked on the user is taken to a page that allows them to pick out what
kind of weblet to make:

Once this weblet has been defined, the original page will display the link without a create this hyperlink:

4. An OpenPortal is as open or closed as you like - & everywhere in between.

It is an extremely powerful notion to allow users to completely reconfigure and extend a site. With this
ability comes the fear that any redefinition of power can cause. OpenPortal does not force you to have an
open site and to make everything changeable – though it certainly encourages you to. Instead OpenPortal
has an extensive permissioning system based on the English abilities of Easy Command Language, which
allows people to run an OpenPortal as open or as closed as they wish.

OpenPortal allows users to create Sites. One OpenPortal server can have several Sites, all below a top-
level root. Each Site can also have multiple Areas beneath it.

SiteSite

Top-Level
Root

Area Area Area

Each Site and Area can define general policies on what kind of Easy Command Language a user can
execute when within them. Within each Site Users can have Roles, such as Editor, Owner, Member, and
Guest. Within each Area and Site a user's Roles can be used to either restrict or enable ECL commands.

Site Area Role/User ECL Command
Linux Site Main Area Owner Can edit all

The table above shows how one can restrict or allow ECL commands based on Roles, Users, Areas, and
Sites. In this example any user who has the Role of Owner in the Main Area of the Linux Site can edit
everything. The next table shows more examples of restricting commands based on roles and users. In the
first line the user Paolo de Dios is given permission to edit everything ("Can edit all") in the Discussion
Area. In the second line a default security setting is set for everyone ("Default for Everyone") so that
everyone cannot edit anything. Permissions are enforced in the order they are given, so that permissions
higher in the table below are enforced and can over-ride lower permissions.

Site Area Role/User ECL Command
Linux Site Discussion Area Paolo de Dios Can delete all
Linux Site Main Area Default for Everyone Cannot edit all

Sites and Areas can hold other weblet containers, but cannot hold nested Sites or Areas. They can also set
policies on whether children Areas, weblet containers, and weblets can over-ride the security settings of
their parents. For example, in the table below anyone who has the role of being Owner in every Area in the
Linux Site can change children permissions of sub-Areas or weblet containers, while the Default for
Everyone is set so that the everyone cannot set Area permissions but can set a weblet container's
permissions in the Discussion Area.

Site Area Role/User ECL Command
Linux Site All Owner Can set area permissions
Linux Site All Default for Every one Cannot set area permissions
Linux Site Discussion Area Default for Everyone Can set weblet container
permissions

Weblets and weblet containers can also have their own security policies attached to themselves.

A web-based user interface is used to set these policies for each Area, Site, weblet, or weblet container.
They all have the same general form, an example is shown below for setting the properties of a Site named
Linux Site:

The user interface has two sections; a top section in which security settings are set by creating the
appropriate phrase from pull-down menus, and a bottom settings where all the security settings for the site
are listed. There is also a bottom section for assigning users different Roles for Sites. For example, in the
screenshot above the top section has the following security phrase spelled out from the pull-down menus:

In this site Everyone can set security for area

These new phrases can be added to the site by hitting the "Add" button, and the new phrase will be added
after whatever phrase was highlighted in the lower section.

The pull downs for the top-down section are as follows:

In the upper right portion of the user interface is a scrolling list that has all possible ECL commands
enumerated (i.e. "set security for area", "set security for site", etc.). The ECL commands which can have
security set on them are as follows, with descriptions where appropriate.

• set security for area
• set security for site
 These two commands give someone permission to set the security properties for an area or a site.
If someone is allowed to set the security, a form similar to the ones above is returned.
• create weblets that override parent's settings

This gives a user permission to create a weblet that can override the weblet's parent security,
possibly allowing more permissive or restrictive use of the weblet then the parent would provide.
For example, using this setting would allow someone to create an editable Article weblet in an
area where nothing can be edited.

• assign all roles
• assign Owner role
• assign Editor role
• assign Member role
• assign Guest role

These five commands gives a user the power to assign roles to other users in an area or a site. For
example, a user could be given the power to assign the Member role to a new user.

• other (fill in command in box below)
This selection is used for typing in ECL commands that have not been enumerated. This is
commonly used for setting ECL commands on individual weblets (i.e. edit "My Business Card").

• do everything with all weblets
This gives a user free reign over all weblets in an area, though this does not give them permission
to change a site or area's security settings or to assign roles.

• edit all weblets
• view all weblets
• delete all weblets
• clone all weblets

These ECL commands give a user permission to run edit, view, delete, or clone commands on any
weblet.

• set security for all weblets

This allows a user to change the security properties of a weblet; note that this does not include the
ability to change the security permissions of the area or site.

• create all weblets
• create Business Card Weblet
• create Normal Page Weblet
• create Article Weblet
• create Toolbar Weblet

Every available weblet is enumerated and a 'create' option is put into the list. This allows one to
restrict the creation of certain types of weblets to certain users.

• do everything with all Business Card Weblets
• edit all Business Card Weblets
• view all Business Card Weblets
• delete all Business Card Weblets
• clone all Business Card Weblets
• move all Business Card Weblets
• set security for all Business Card Weblets
• do everything with all Normal Page Weblets
• edit all Normal Page Weblets
• view all Normal Page Weblets
• delete all Normal Page Weblets
• clone all Normal Page Weblets
• move all Normal Page Weblets
• set security for all Normal Page Weblets

For each type of weblet all possible commands that can be run on this weblet is enumerated.
Above are two example enumerations for Business Card Weblets and Normal Page Weblets.

The bottom portion of the security form shows all the security settings for the site. Three buttons can be
used to manipulate these: 'Remove', 'Save', 'Add', and 'Change'. Hitting Remove removes a highlighted
security setting from both the client and server. Hitting Save saves a modified ECL command and all
modifications. Hitting Add causes the ECL command that has been specified in the top-portion of the user
interface to be inserted into the bottom portion. Hitting Change loads the selected ECL command into the
top-portion.

There is also a bottom section for assgning users different Roles for Sites. The form to do this is located at
the bottom of the Site form above. The default role for all users can be set with this form. Roles are listed
in a list-box, and can be Removed, Saved, Added, and Changed by clicking on the appropriate buttons and
selecting from the lower pull-downs (i.e. "Brad Neuberg" is an "Owner").

The form for setting an area's security policies looks similar to the site security form:

All that is different is that the Area is already restricted and the ECL command 'set security for site' is
removed upper right box. Also, Areas cannot have their own assigned roles; roles are only assigned from
Sites.

Weblet Containers also have their own security properties form:

The upper-right ECL command box includes all the same commands as the Site box, without the 'set
security for area' and 'set security for site' commands.

Weblets have the simplest security settings:

The upper-right ECL command box has the following commands:

do everything to this weblet
edit this weblet
view this weblet
delete this weblet
clone this weblet
set security for this weblet

An interesting feature that balances being too open with being too closed is the clone feature that some
weblets support. It is sometimes desirable to have some weblets be uneditable, such as a research paper
that has been posted on an OpenPortal. However, it might also be useful to allow others to clone this paper
and then let them make changes only on the clone, but not on the original:

5. All the interesting stuff happens when openness is taken to the point of craziness.

While OpenPortal can be used to build old, boring closed sites, all the fun starts to happen when you push
and edge out into crazy openness. This is when the proverbial sh*t hits the fan. Wouldn’t it be interesting
to make a closed site using OpenPortal but allow anyone to clone that website and change it to make their
own? Imagine the interesting results that would occur as the mutations of your website went from one
clone, to two clones, to four clones, to sixteen, growing exponentially and changing each time?

Original
Site

Clone of
Original

Site

Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Some of these clones would be worthless, but wouldn’t one of them be a gem that takes your website in a
brilliant direction unforeseen by you? Isn’t this the open-source idea – applied to websites?

In future versions of OpenPortal not only will the website be changeable, but users themselves will be able
to create entirely new weblets, extending OpenPortal in directions unforeseen to the OpenPortal team.
OpenPortal is itself built with weblets: because of this, OpenPortal is a system that supports the evolution
of its own process of evolution – the entire foundation of OpenPortal itself, not just its content, will be
changeable through OpenPortal itself!

Some shouts from the audience:
 “It will collapse if you make it that open...”
“But you can’t allow such openness!”
“No one needs that level of openness anyway...”
“Every other company and person will destroy you if you’re that open!”

Weren’t these the original criticisms railed against the Internet, and isn’t it damn more interesting that its
closest competition, the closed monolithic telecom network? The same criticisms were shot at the World
Wide Web, which is vastly more interesting than the closed Information Superhighway peddled by the
cable companies.

OpenPortal is about building a massively open system that can handle and tolerate its own rapid evolution
and change. While you can build a traditional closed system with OpenPortal, the more you experiment
with crazy openness on your own OpenPortal the more interesting your site will become.

6. Websites become discussions and discussions become websites.

When users have the ability to create entirely new pieces of a website, the website itself simply becomes
one giant bubbling conversation. But on OpenPortal chaos does not ensue because weblets provide just
enough order to keep things structured. If editing an OpenPortal page were more like writing with a
WYSIWYG (What-You-See-Is-What-You-Get) editor like Microsoft Word, then there would be absolutely
no structure to keep things ordered. With a few phrases of ECL users can create entirely new site weblets,
article weblets, comment weblets, etc. in response to other site weblets, article weblets, comment weblets,
etc. What once used to be static pages can now branch out into entirely new sections created by users. The
Main Page can be filled with Comment weblets, or any type of weblet.

"But don't web-based threaded discussion boards already provide a place for discussions?"

Yes, if you only care about having flat discussions that have no more structure than a hierarchy.
OpenPortal allows you to leap out of a thread-discussion boards structure into entirely new directions. Free
yourselves from the shackles of threaded-discussion boards! Imagine being able to respond to a comment
with an entirely new OpenPortal Site, made while your typing the response It's not about WYSIWYG –
it's about discussion, but at a higher-level than simple threaded discussion boards can handle.

7. The website supports its own growth.

An OpenPortal allows the creation of new Sites and Areas within it. From any edit form a user can enter
the ECL command create Site Weblet or create Area Weblet:

Unlike other weblets, the Site or Area weblet will not be embedded in the page you type the command in –
this is why it can be typed from anywhere in an OpenPortal. When the user hits save a form will come
back to create the new site:

The user can click the Create Area button to create a new Area in this site:

The user can now begin populating this area with new weblets.

The user that creates a new Site instantly become the Owner of that Site and can set permissions and give
out roles. The original creator is therefore free to make the Site as open or as closed as he wishes.

8. The walls between web sites are broken down, and OpenPortals can interoperate.

Let's examine the state of the web today. Major websites and portals sit like monolithic cathedrals on the
web landscape:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

Each one of these cathedrals wants to be the cathedral, sucking in and controlling everyone else – none of
them would ever dare to have their fortresses interoperate, except through corporate mergers!

Enter OpenPortal. In a future OpenPortal release weblets will become mobile weblets, able to move
between OpenPortals. OpenPortals will be able to form networks with each other. This entire OpenPortal
network will be open, just like the Internet and the World Wide Web. Using mobile weblets OpenPortals
will be able to support the following between them:

• Weblets from one site can be automagically embedded and linked to using Easy Command
Language

• Every user will get a clipboard – using dynamic html they can drag any weblet onto this clipboard
from one OpenPortal site and paste it onto another. In the background the two OpenPortals are
exchanging the mobile weblet.

• Subscribing to a weblet amounts to simply copying and pasting a weblet from a remote
OpenPortal. A link is retained to the old remote weblet, so that whenever the old weblet changes
the new "pasted" weblet changes as well.

• Compound documents of weblets can be created, with some of the weblets actually being from
other OpenPortal sites and being updated whenever the original changes

• A universal log-in network can be created across OpenPortals for higher-level user-services
• Users can "carry" their web-sites around with them from OpenPortal to OpenPortal, as if it were in

their back pockets.
• Many other exciting features

It will be exciting when OpenPortals begin to interoperate in future versions. Each of these OpenPortals
will start as tiny rain drops on the internet, insignificant when compared to the huge puddles that are the
major portals and major web sites; however, these OpenPortals will actually work together:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

Cannot Interoperate

Interoperable

OpenPortal

OpenPortal

OpenPortal

Can W
rap

But when a thousand rain-drops begin to merge together, forming larger and larger puddles, the portals and
large sites will have to listen: web-sites are not cathedrals, they are a bazaar. In the beginning we were
nothing but a few rain-drops, but when a few rain-drops coalesce they suck in all the puddles:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal
OpenPortal

The OpenPortal Network

This phenomenon has occured in the past for many of the major internet technologies: internet email, the
World Wide Web, etc. The diagram below illustrates how in 1990 most of the major online services and
software packages that supported email, such as Compuserve, AOL, Lotus Notes email systems, and others,
could barely support interoperability of email systems between competing services, if they even tried.
Around this time SMTP internet email servers began to proliferate; they were tiny and located mostly in a
university setting:

AOL Email
System

Lotus Notes
Email Systems

Compuserve
Email Systems

MCI-Mail Email
Systems

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

Cannot Interoperate

In
tero

p
erab

le

SMTP

SMTP

SMTP

Can W
rap

Email Systems About ~1990

Before anyone knew what happened these tiny servers had surrounded most of the major online services,
conglomerating themselves into one giant network that actually supported interoperability between
themselves and their competition:

AOL Email
System

Lotus Notes
Email Systems

Compuserve
Email Systems

MCI-Mail Email
Systems

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP
SMTP

The SMTP Network

These diagrams illustrate what OpenPortal really is: a light-weight component-level standard agreed upon
by websites, called weblets, which are controlled by the users through an OpenPortal.

It is only through the openness of the bottom-up process that we can build an interoperable web controlled
and built by its users. OpenPortal is the mp3 of web-site technology. Hopefully if you can -->change the
technology<--, you can -->change the rules<--.

9. If they don't want to play, wrap 'em as components.

We can't expect the big boys to play nice when OpenPortal comes along, so OpenPortal includes a
controversial technology: the ability to wrap portions of other, non-OpenPortal websites as weblets. For
example, the weblet below wraps a portion of the Excite Communities website as a weblet:

Here is another web portal service wrapped as a weblet. In this case it wraps a portion of a website known
as eGroups as a weblet, to reuse its group functionality within an OpenPortal without anyone even knowing
it actually makes calls back to the eGroup website:

Both of these weblets can now be mixed and combined with other weblets, all on the same OpenPortal
page. Some of the other weblets could themselves actually be wrappers around other websites. OpenPortal
can then use these weblets to force the websites to interoperate, or to provide a unified portal to the user
based on many other websites functionality.

10. You may not even know you're on an OpenPortal (because you're not).

Some people can choose to throw most of OpenPortal away and just use the Weblet Framework (see the
document "Creating a Weblet") A weblet is a reusable piece of web-functionality that uses Easy Command
Language and html as its front-end and two technologies known as weblet descriptors and Weblet Server
Pages (WSP) on the middle-tier. Weblets can wrap potentially any back-end technology, whether it is
JavaBeans, relational databases, CGI-BIN scripts, or even other websites. Technically, a weblet is nothing
more than a bundle of properties, ECL commands, and template scripts. These are all declared in a file
known as a weblet descriptor. Here is the weblet descriptor for a Business Card Weblet:

<? xml version="1.0" ?>
<weblet>
 <!—The Business Cards properties: name, organization, slogan, role,
 email, and phone number -->
 <property name="name" default-value="Your Name"/>
 <property name="organization" default-value="Your Organization"/>
 <property name="slogan" default-value="Your Slogan"/>
 <property name="role" default-value="Your Role"/>
 <property name="email" default-value="Your Email Address"/>
 <property name="phone_number" default-value="Your Phone-Number"/>
 <!—The Business Cards commands: display, edit, and save -->
 <command full-command="display this" embed="BusinessCard.wsp"/>
 <command full-command="edit this" embed="BusinessCard.wsp"/>
 <command full-command="save this" embed="BusinessCard.wsp"/>
</weblet>

This weblet descriptor is just a flat-text file that sits in the filesystem. It establishes the properties and
commands for a business card weblet. Notice the three <command> tags. These establish the edit,
display, and save commands for the weblet. You can choose to throw away all of these commands and
create your own new commands, completely dropping the edit command if you want. For example, you
could create a "send card owner email" command and a "add card owner to contacts list" command by
adding the following to lines to the weblet descriptor file:

 <command full-command="send card owner
email"embed="BusinessCard.wsp"/>
 <command full-command="add card owner to contacts list"
embed="BusinessCard.wsp"/>

Now, if the user enters the ECL commands "send card owner email" anywhere in the edit form of this
weblet or clicks on a hyperlink titled send card owner email, then this command will be found in the weblet
descriptor file and run.

Every command in a weblet is associated with a Weblet Server Pages(WSP) file that is executed when the
command is executed by the user:

 <command full-command="edit this" embed="BusinessCard.wsp"/>

This WSP file is just like Java Server Pages (JSP) or Active Server Pages (ASP) (it's actually just a subset
of the two), and contains a mix of html and java, javascript, or webl that is executed on the server side. In
the future anything could be called from the embed parameter, whether it's a perl script, COM control, PHP
script, server-side include, or Frontier script. In this way you can expose the functionality of sophisticated
server-side perl scripts as simple human executable ECL commands.

Creating a Weblet

The Basic Weblets

Before we begin to create weblets, we must examine what kinds of weblets are possible. Most

weblets can be divided into two types: property weblets and service weblets. Property weblets are very
simple; they are just a list of properties that are strings. For example, a business card weblet could consist
of five basic properties: name, organization, email, phone-number, and address. The diagram below is a
simple property weblet with three properties: Property 1, Property 2, and Property 3. A display temp late
can then display these properties in a web browser. The <%=weblet.Property1%> expression is a Weblet
Server Pages (WSP) phrase that displays the value of Property1. Property weblets don't just include a
template to display themselves in html; they also include an edit form that can be generated on demand to
change a weblet's properties.

Property1 = value1

Property2 = value2

Property3 = value3

Display Template

Property1: <%=weblet.Property1%>
Property2: <%=weblet.Property2%>
Property3: <%=weblet.Property3%>

Weblet

Property Weblet

Display Template Output

Property1: value1
Property2: value2
Property3: value3

Edit Form

The second kind of weblet is a service weblet. This kind of weblet wraps an underlying service

and then exposes these services as Weblet Commands. This can be used to wrap other web-technologies,
like perl scripts or Java Server Pages (JSP) files, or to offer easy to use services through OpenPortal. In the

example below a web-based email system that was written in perl is wrapped by a weblet that exports email
commands, such as Add User. These commands could then be used from any weblet by entering àAdd
Userß, which would cause the Weblet Command parser to automatically hyperlink Add User and initiate
that action when clicked on. While a property weblet provides a form to change its properties, service
weblets usually have configure forms to configure the services. An example configuration form is shown
below that allows a user configure the email weblet through a web browser.

Weblet

Service Weblet

Configuration Form

Perl Web-Based
Email Scripts

Weblet Commands

Add User
Remove User
Send Email
Get Email

Using Exported Actions

<H1>Some Toolbar</H1>
-->Add User<--
-->Send Email<--

Resulting HTML

Some Toolbar
Add User
Send Email

 Service weblets and property weblets are not mutually exclusive; most weblets will probably be a
mix of the two. For example, a weblet could provide some properties that are in-place editable as well as
export some services
.

Different Skills, Different Needs

There are many different kinds of users with different needs. The Weblet Base divides these users into two
types: those on the server-side who have direct shell access to an OpenPortal server, and those on the
client-side who are operating through a browser.

Creating a Weblet on the Server-Side

Many computer programming languages seperate what a program does from how the program does it.
This is called seperating the what from the how. For example, one can specify that a program sorts items
(the what) from how the sorting algorithm actually works (the how). The C language does this by
seperating variable and function declarations into a header file and the actual C code for the header file into
a source file. Java has the ability to seperate the what into something called an interface, while the actual
how is taken care of by a Java class that implements the interface. There are many good reasons to seperate
what a program does from how it actually performs it. One is that it makes programs easier to maintain and
change, since one can easily change how a program actually works "under-the-hood" without changing
what it actually does.

A similar concept is the Model-View-Controller pattern. In this design pattern a model describes what
something does while a view-and-controller describes how the model is visually presented and controlled
by the user. The model contains no presentation logic; it simply simulates some object (i.e. it is a model).
The view and controller modules are usually combined together into one, since it is natural to specify how
something looks along with how a user manipulates the view. As an example of the model-view-controller
pattern, one could have a model that simulates a business card, providing methods to get and set this
business card's properties. A seperate view and controller module could display this business card visually
on a monitor and allow a user to manipulate the business card using a mouse. Java Server Pages (JSP)
follows this pattern; in JSP a JavaBean acts as a model, while a JSP page manipulates this JavaBean model
to create an HTML presentation and to respond to user requests through the browser. The model-view-
controller pattern allows one to change how a system looks and is controlled without affecting the model.
In the business card example, one could provide all types of new presentations and responses to user input
for this business card model without having to change the model.

Creating weblets integrates both principles. Following the principle of seperating the what of a weblet
from its how, a weblet consists of two pieces: one piece promises the what of the weblet, exposing the
properties and commands that the weblet supports, while the other piece provides the actual how that gives
the weblet it's functionality:

Property1

Weblet Descriptor

Property2

Property3

Command1

Command2

Command3

Describes the commands a weblet is
capable of doing, and what

properties a weblet has

Actual functionality
implemented by

.............<% if (
WebletCommand.full_command ==
"Command1") { %>

<H1>You requested
Command1!</H1>
<% } %>.............

Actually implements the functionality
for this weblet

the what of a weblet

Weblet Server Pages
the how of a weblet

Following the second principle, these two pieces can be seen as the model and view-controller for the
weblet:

Property1

Weblet Descriptor

Property2

Property3

Command1

Command2

Command3

Describes the commands a weblet is
capable of doing, and what

properties a weblet has

Presentation and
flow of control

defined by

.............<% if (
WebletCommand.full_command ==
"Command1") { %>

<H1>You requested
Command1!</H1>
<% } %>.............

Provides the presentation that
determines how the weblet is

presented

the model of a weblet

Weblet Server Pages
the view-controller of a weblet

These two weblet pieces are contained in two seperate files, a weblet descriptor file and a Weblet Server
Pages (WSP) file. A weblet descriptor file has the file extension .weblet, while a WSP file has the
extension .wsp. A weblet descriptor file declares the commands and properties that a weblet supports, and
also specifies which WSP file to execute for which commands. A WSP file contains scripting code and
HTML presentation code.

Sequence of Actions for Weblet Descriptor File and Weblet Server Pages File

When a user issues a weblet command, such as "edit", a specific weblet descriptor is found for the type of
weblet that the command is performed on. In the example below the weblet type is a Business Card.weblet.
Inside this weblet descriptor is a list of all the commands that the weblet supports. In this case there is only
one command, "edit." Every weblet command is associated with a Weblet Server Pages (WSP) file. In the
example below the "edit" command is associated with the WSP file Business Card.wsp . Since the user
requested the "edit" command, the associated WSP file Business Card.wsp is executed and the HTML
results are returned.

Weblet Descriptor

<weblet>
 <command action="edit" embed="BusinessCard.wsp">
</weblet>

Business Card.weblet

Weblet Server Pages

<H1>HTML that defines the business card's edit form
goes here</H1>
<% // a scriptlet block to check for edit conditions %>

Business Card.wsp

User clicks on hyperlink

Command tag for "edit" is found

WSP script associated with
"edit" command tag is
executed

HTML is output

Weblet Descriptor Files

A weblet descriptor file is written in XML. It begins with a standard XML directive:

<? xml version="1.0" ?>

Next comes the declaration of a weblet:

<? xml version="1.0" ?>
<weblet>

If the weblet is a weblet container than this tag would be

<? xml version="1.0" ?>
<webletcontainer>

If a weblet is a service weblet, then the attribute service-weblet should be set to true:

<weblet service-weblet="true">

By default this is set to false. There can only be one copy of this weblet if it is a service-weblet (i.e. it is a
singleton). If someone enters a weblet command without any target:

-->Login User<--

Then this command will automatically be sent to the one weblet that has this command. This allows one to
export weblet commands that are available anywhere in the site as services. In the Login User example
above, a Login weblet could be created that is a service weblet which exports this command.

After the weblet tag comes the declaration of a property:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-value="defaultValue1"/>

This declares that the weblet has a property named property1 and that the default-value given to this
property when a new weblet of this type is created is defaultValue1. The default-value argument is
optional, and if not given then default-value for a property is just the empty string "". The name of a
property must be between a-z, A-Z, 0-9, or the special characters underscore _.

A weblet can have several properties:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>

All weblets share certain standard-properties, such as an owner or the date the weblet was created. These
standard-properties do not need to be declared in the weblet descriptor, but it is sometimes useful to over-
ride one of their default values:. All standard properties are defined with the <standard-property> tag.

 <? xml version="1.0" ?>
<weblet>

 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>

This tag over-rides the standard-property defaul_input, which has to do with the inplace-editing feature of
weblets (this is described below).

Command declarations come after property declarations, describing the commands that the weblet
supports:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>

This tag declares that the weblet has a command performSomeAction onSomeObject, and when this
command is activated (say by a hyperlink), then the Weblet Server Pages file named someFile.wsp should
be executed and its HTML results embedded.

A weblet can have several commands:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>

The action attribute usually identifies some verb, such as edit, set, and display, while the perform-on
attribute is usually a direct object of the verb, such as this, properties, business card . Multiple actions and
perform-on's can be specified by using a comma:

<weblet>
 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>

 <command action="add,create" perform-on="this"
embed="anotherFile.wsp"/>

This new command tag states that whenever the weblet commands "add this" or "create this" is requested
by the user, the WSP file named anotherFile.wsp is executed and its results are embedded. Using commas
to specify several actions or perform-on's is useful for specifying a weblet command that may have several
different ways of being expressed. For example, the weblet commands "add this" and "create this" are
basicly equivalent, and commas allow this to be expressed as one command tag.

Instead of providing the parts of speech (i.e. the action and the perform-on) for a command, the full
command can be provided through the full-command attribute:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-value="defaultValue1"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command full-command="some long command" embed="someFile.wsp"/>

Every command tag must provide the embed attribute. This provides a script file that is executed when the
command is requested by the user. This script file is passed a reference to the weblet itself, the weblet
command that was requested by the user, and the request and response objects that are a part of the servlet
API; this is covered in more detail in the section on Weblet Server Pages. The WSP filename that is given
in the embed attribute is within the Java Naming Directory Interface (JNDI) namespace; if the filename has
no directory slashes at the beginning of it, it is searched for in the weblet's local directory.

Other scripting languages and technologies can be called other than Weblet Server Pages. It should be
possible to make JSP and ASP scripts callable from the embed attribute, though this is not planned for the
current release. Currently the only technology other than WSP that can be called are java methods in the
weblet itself. A method on the weblet class itself can be called by using the "this" operator and the method
name:

 <command full-command="some long command"
embed="this.someMethod()"/>

This will call the method someMethod() on the weblet itself when the command specified is encountered.
This is useful for calling default methods in the weblet base-class for certain default actions. For example,
when a weblet-container receives the "add" command it should call a predefined method in the
WebletContainer base class named addWeblet(:

<weblet-container>
 <command action="add" perform-on="this" embed="this.addWeblet()"/>

Any method that is called from the embed tag must be able to take the weblet itself as a reference, the
weblet command, and the request and response objects as arguments.

Command tags are not exclusively executed; if the weblet command requested by the user is declared in
several command tags, then each of the scripts listed by these tags will be run one after another and their
output will be concatenated together. For example, if a weblet has the following two command tags:

<command action="save" perform-on="this" embed="this.saveWeblet()"/>
<command action="save,display" perform-on="this" embed="someFile.wsp"/>

and the weblet command "save this" has been requested by the user, then the first command tag will
execute first by calling this.saveWeblet(), followed by the second command tag which will execute
someFile.wsp and concatenate its output onto the first output.

Many times the perform-on attribute will be set to "this." Since the perform-on attribute is meant to be the
direct-object of the action, it is useful to have a short-hand way of deducting whether a requested weblet
command actually refers to the weblet defined in the weblet descriptor itself. It is impossible and inflexible
to hard-code the actual name of the weblet into the perform-on attribute. For example, if there is a business
card named "Brads Business Card", and a user requests the weblet command 'edit "Brads Business Card"',
this could be hard-coded as:

<command action="edit" perform-on="\"Brads Business Card\"">

However, it would be useful if the system automatically checked to see whether the weblet descriptor that
is being called matches the perform-on attribute; if so, it converts the value of perform-on in the original
weblet command into the word "this." In the example above, if the weblet that is being called is named
"Brads Business Card" and the target of the "edit" command is "Brads Business Card", then the value of the
perform-on attribute in the actual weblet command variable, WebletCommand, is changed to "this". This
means that the above command tag can be converted to:

<command action="edit" perform-on="this">

which is much more flexible and generalized and less dependent on the actual name of the weblet.

A set of Dynamic HTML properties are also defined for the <weblet> tag and the <property> tag. The
attribute draggable can be added to either a <weblet>, <weblet-container>, or <property> tag:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-value="defaultValue2"/>
 <property name="property3" default-value="defaultValue3"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command full-command="some long command" embed="someFile.wsp"/>
</weblet>

The draggable attribute states that either the weblet, weblet-container, or property is draggable. The WSP
script that is called can check this property, and can either honor it or not when attempting to create the
javascript and Dynamic HTML that is part of making weblets drag and droppable. If the draggable
attribute is left off it defaults to false.

Another Dynamic HTML attribute is the inplace-editable attribute. This attribute is similar to draggable in
that it can only be placed either on a <property> tag, and denotes that the property can be edited simply by
clicking on the element:

<? xml version="1.0" ?>

<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-value="defaultValue2" inplace-
editable="true"/>
 <property name="property3" default-value="defaultValue3" inplace-
editable="false"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command full-command="some long command" embed="someFile.wsp"/>
</weblet>

If the inplace-editable attribute is left off it defaults to true. Like the draggable attribute, underlying WSP
scripts can check whether a given property has the inplace-editable attribute set to true and decide whether
to honor this flag. It is merely a suggestion to the underlying presentation WSP.

When a property that is inplace-editable is clicked on, it is replaced by some kind of form input. The
default is that the property is replaced with a standard <input type=text> tag, though this default can be
over-ridden by setting the standard-property default_input to something else:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-value="defaultValue2" inplace-
editable="true"/>
 <property name="property3" default-value="defaultValue3" inplace-
editable="false"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command action="anotherAction" perform-on="onSomeObject"
embed="someFile.wsp"/>
 <command full-command="some long command" embed="someFile.wsp"/>
</weblet>

For any property which has had inplace-editable be set to true and which does not define its own custom
input, the default_input is used for this property when it is clicked on. For example, in the above weblet
descriptor block when property2 is clicked on in a browser it is replaced with the default_input, which is
<input-type=text size=42 maxlength=80>. Individual inplace-editable properties can also
provide their own inplace-input attribute for what kind of input they are replaced with when clicked on:

<property name="property2" default-value="defaultValue2" inplace-
editable="true" inplace-input="<textarea>"/>

This will replace property2 with a <textarea> when it is clicked on rather than the default_input of <input-
type=text size=42 maxlength=80>. Note that for both the default_input standard-property and the inplace-
input attribute only a form input type may be given. This form input must not define the name or value
attributes of the input, and cannot include more than one tag. The inplace-editing engine automatically fills
these values in according to certain characteristics.

<property name="property2" default-value="defaultValue2" inplace-
editable="true" inplace-input="<textarea>something</textarea>"/>
INCORRECT

<property name="property2" default-value="defaultValue2" inplace-
editable="true" inplace-input="<textarea wrap=virtual>"/>
CORRECT

<property name="property2" default-value="defaultValue2" inplace-
editable="true" inplace-input="<input type=text name=property2>"/>
INCORRECT

<property name="property2" default-value="defaultValue2" inplace-
editable="true" inplace-input="<input type=text value=something>"/>
INCORRECT

A final example weblet descriptor is provided for a business card weblet:

BusinessCard.weblet:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="name" default-value="Your Name"/>
 <property name="organization" default-value="Your Organization"/>
 <property name="slogan" default-value="Your Slogan"/>
 <property name="role" default-value="Your Role"/>
 <property name="email" default-value="Your Email Address"/>
 <property name="phone_number" default-value="Your Phone-Number"/>
 <command action="save,display" perform-on="this"
embed="BusinessCard.wsp"/>
 <command action="edit" perform-on="this" embed="BusinessCard.wsp"/>
 <command action="set" perform-on="security, security settings,
settings, security properties" embed="StandardSecurityForm.wsp"/>
</weblet>

Weblet Server Pages

Weblets are actually scripted seperate from the weblet descriptor in a Weblet Server Pages (WSP) file,
which has the extension wsp. A WSP file consists of scripting control code and HTML presentation code.
WSP is based on Active Server Pages (ASP) and Java Server Pages (JSP), and is a light-weight subset of
both standards.

All WSP files begin with a language directive that states what language the script in the WSP file is written
in:

<%@ language="javascript" %>

This directive is inspired by the JSP specification. The following languages are currently supported in
WSP:

• Javascript/ECMAscript (language="javascript|ecmascript")
• WebL (language="webl ")
• Java

The preferred and default language for WSP pages is Javascript. All examples in this section use
Javascript.

The rest of the WSP file consists of scriptlets and HTML. A scriptlet is a block of code between the tags
<% and %> in the language defined in the language directive:

Example.wsp:

<%@ language="javascript" %>
<H1>Hello world!</H1>
<%
 var someVariable = "blah";
 function someFunction() {
 write(someVariable);
%>
<CENTER>Some more HTML</CENTER>

If a weblet descriptor existed that had the following:

<weblet>
 <command action="display" embed="Example.wsp">
</weblet>

Then when a user requested the weblet command display, Example.wsp would be executed and the results
would be returned as a string. The scriptlet block would execute and its results would be embedded in
Example.wsp's output:

<H1>Hello world!</H1>
blah
<CENTER>Some more HTML</CENTER>

While WSP files can be this simple, in general a WSP file is used to perform and present a user's weblet
command request. Several objects are exposed to the WSP scripting language in the scripting language's
native format to help proces the user's weblet command request:

• Standard JSP objects
o request
o response
o servlet
o session
o input
o output
o parameters

• Special WSP objects
o weblet
o WebletCommand
o WebletManager
o naming

The standard JSP objects can be referenced exactly as one would in java. The following would be legal
references:

o servlet.getServletContext().getRealPath(myFilename)
o request.getRemoteUser()
o response.setHeader("Content-encoding","binary")

The servlet object corresponds to the Java servlet's this object. Since the same servlet is shared by all WSP
pages, servlet is actually a global object.

The request and response objects are the same as their corresponding counterparts in the service method
argument list. These objects are refreshed with each WSP page invocation.

session is actually a shorthand for request.getSession(true). By its nature, this object is static for the
duration of the client's connection.

input is actually a shorthand for request.getInputStream(), while output is shorthand for the string result
that is returned by the execution of the WSP file.

The parameters object contains the collection of parameters passed to the WSP page through the request's
query string. Single-valued parameters are stored as scalars, multi-valued parameters are stored as arrays.

An individual parameter (for instance, filename) can be referenced as parameters.filename or as
parameters["filename"].

Referencing non-existant parameter properties should not cause any errors. If a non-existant parameter is
referenced then the offending javascript statement is simply ignored.

WSP provides special objects to make it easy for WSP scripts to manipulate the weblet descriptors that
called them. The first is the WebletCommand object. This object exposes all of the details concerning the
weblet command that the user requested. It has the following properties:

WebletCommand.action – the action requested by the user
WebletCommand.perform_on – the object on which the action was requested
WebletCommand.full_command – the full command (action + perform_on)
WebletCommand.weblet_name – the name of the weblet on which the command is executed on
WebletCommand.current_user – a reference to a User object for the user that executed the command
WebletCommand.current_container – a reference to the parent weblet container of the weblet that the
command was executed on
WebletCommand.current_site – a reference to the Site object that the target weblet is in
WebletCommand.current_area – a reference to the Area object that the target weblet is in
WebletCommand.full_name – the full path-name of the target weblet

The weblet object provides access to the weblet that called the WSP file and information about the weblet.
Using Javascript one can access everything within the weblet object using the Document Object Model
(DOM). The weblet object exposes all of the values of a weblet's properties that were defined in the weblet
descriptor:

<% write(weblet.property1);
 weblet.property2 = "hello world";
%>

Further, any of the attributes that were defined for these properties in the weblet descriptor, such as
draggable or inplace-editable, are accessible as well, using the Document Object Model:

<%
weblet.property1.draggable
weblet.property2.inplace-editable
%>

All of the properties can be referenced as follows, using Javascript:

<%
weblet.all.tags("property");
%>

This returns an array of all the properties.

A weblet's standard-properties is referenced as follows:

weblet.standard_properties.property_name

where property_name is some standard property, such as the owner:

<%
weblet.standard_properties.owner = "Brad Neuberg";
%>

A different weblet command than the one currently executing in the WSP file can be invoked on the weblet
as follows:

<%
 weblet.embed("Full Command", WebletCommand, request, response);
%>

where Full-Command is some weblet command like "display business card". If the command does not
exist no error is thrown and the embed() method simply returns.

WebletManager exposes methods for weblets to gain a context to the naming service, as well as a method
to embed other weblets.

The naming object exposes the root of the naming service so that operations may be performed in the
directory services.

It is recommended that WSP files not output <html>, <head>, or <body> tags, since several WSP files
could be chunked together by a weblet container and the existence of multiple <html> or <head> tags in
each of these chunked weblets could confuse browsers.

Just as in Java Server Pages, the shortcut tag <%== someVariable.property %> exists to print out a
variable's current value. For example, to print out the value of the weblet property organization in some
weblet, one would do as follows:

<H1>Hello I am a member of <%== weblet.organization %></H1>

which if weblet.organization was set to "OpenPortal" would print out:

<H1>Hello I am a member of OpenPortal</H1>

Dynamic HTML Tags

OpenPortal provides some conveniance tags that can be used in WSP scripts to help create Dynamic
HTML interfaces. All of these tags are based on XML, and have the namespace weblet attached to them.
These tags help build the following functionality into weblet user interfaces:

• Inplace-editing

In the future these tags and the DHTML subsystem will be extended to allow the creation of extremely
powerful user interfaces for weblets in a way that is transparent to both the developer and cross-platform.

Inplace-Editing Tag

To add in-place editing to a property in a WSP file, place the tag <weblet:INPLACE-EDIT> around the
html which displays the property. For example, if one has a weblet that has the property organization in it
and wishes to make it inplace-editable, one would surround it with the inplace-edit tag:

I am a member of <weblet:INPLACE-EDIT property-
name="organization"><%==weblet.organization%></weblet: INPLACE-EDIT>

If the value of organization was "OpenPortal", then this would print out:

I am a member of OpenPortal

and when a user clicked on the word 'OpenPortal' the word would instantly turn into a small edit field for
the value of weblet.organization to be changed.

OpenPortal automatically inserts the correct javascript and information in a WSP file when sent to the
client if it contains <weblet:INPLACE-EDIT> tags.

Examples of Creating Weblets

The Simplest Weblet – Hello World

Let's start with the absolute simplest weblet, one that prints "Hello World" when it receives the weblet
command "display hello world". When the user clicks on the web page below:

whose HTML looks like this (remember that weblet commands are case-insensitive:

-->Display Hello World<--

The following is displayed:

To make this weblet, a weblet descriptor .weblet file and a Weblet Server Pages .wsp file need to be made.

HelloWorld.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world" embed="HelloWorld.wsp"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript">

<H1>Hello World!</H1>

The service-weblet attribute in HelloWorld.weblet establishes that this weblet is a service-weblet, and that
there will only be one copy of this weblet on the site. If anyone types in the command -->display hello
world<-- then this weblet will be called. The <command> tag establishes that the "display hello world"
command should invoke and run the WSP file HelloWorld.wsp .

Notice that HelloWorld.wsp does not need to check what command called it. HelloWorld.jsp could have
been written as

<%@ language="javascript">

<% if (WebletCommand.full_command == "display hello world") { %>
<H1>Hello World!</H1>
<% } %>

This accomplishes the same thing as the previous version and is not necessary unless desired. If we wanted
to make a more complex version of Hello World that displayed Goodbye World when the commands

"display Goodbye World" or "Goodbye World" are called, and displays "Hello World" when the commands
"display Hello World" or "Hello World" are called by the user, then we could do it as follows:

HelloWorld2.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye world"
embed="GoodbyeWorld.wsp"/>
</weblet>

When "display hello world" or "hello world" are called, HelloWorld.wsp is embedded:

HelloWorld.wsp:

<%@ language="javascript" %>
<H1>Hello World!</H1>

When "display goodbye world" or "goodbye world" are called, GoodbyeWorld.wsp is embedded:

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World!</H1>

Dividing the commands into two seperate files is an easy, quick, and reusable way of making the Weblet
Server Pages, though they could be put into one file as follows:

HelloWorld2.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world, hello world"
embed="World.wsp"/>
 <command full-command="display goodbye world, goodbye world"
embed="World.wsp"/>
</weblet>

World.wsp:

<%@ language="javascript" %>
<% if (WebletCommand.full_command == "display hello world" ||
WebletCommand.full_command == "hello world") { %>
<H1>Hello World!</H1>
<% }
 else if (WebletCommand.full_command ==
"display goodbye world" ||
WebletCommand.full_command == "goodbye world") { %>
<H1>Goodbye World!</H1>
<% } %>

We could add a property to this weblet that underlying Weblet Server Pages files could use to format
themselves as follows:

HelloWorld3.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message goes here"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye world"
embed="GoodbyeWorld.wsp"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript" %>
<H1>Hello World! By the way, here's your <%==weblet.message %></H1>

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World! By the way, here's your <%==weblet.message %> </H1>

We could have an automatic edit form generated for this weblet by adding an edit command to it:

HelloWorld4.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message goes here"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye world"
embed="GoodbyeWorld.wsp"/>
 <command action="edit" perform-on="this" embed="this.edit()"/>
</weblet>

An edit form will automatically be generated for a user to customize the property message. Alternatively,
we could make weblet.message be inplace-editable so that if the user clicks right where weblet.message is
printed out it will turn into a tiny edit field where the value can be changed:

HelloWorld5.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message goes here"
inplace-editable="true"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye world"
embed="GoodbyeWorld.wsp"/>
 <command action="edit" perform-on="this" embed="this.edit()"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript" %>

<H1>Hello World! By the way, here's your <weblet:INPLACE-EDIT
property-name="message"><%==weblet.message %></weblet:INPLACE-
EDIT></H1>

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World! By the way, here's your <weblet:INPLACE-EDIT
property-name="message"><%==weblet.message %></weblet:INPLACE-
EDIT></H1>

A Property Weblet - Business Card

Our next example weblet is a business card weblet. This is an example of a property weblet.

This weblet will have the following properties:

• name
• organization
• address
• slogan
• role
• email
• phone-number

and the following commands:

• display
• edit
• save

This business card weblet will look as follows when given the display command:

Each of these properties will be in-place editable, so that when someone clicks on the organization name –
"BaseSystem, Inc.", an in-place DHTML edit form will instantly be embedded where the value can be
changed:

and if changed:

will instantly reflect this change:

When this weblet is given the edit command (by clicking on the Edit hyperlink above), it will return the
following form which can be used by those without Dynamic HTML browsers:

The properties and commands for the business card weblet are defined in the following weblet descriptor
file:

Business Card.weblet:

<weblet draggable="true">
 <property name="organization" default-value="Organization"/>
 <property name="address" default-
value="Address1
Address2
Address3
"
 inplace-input="<textarea rows=3 cols=30>"/>
 <property name="slogan" default-value="Slogan"/>
 <property name="name" default-value="Name"/>
 <property name="role" default-value="Role"/>
 <property name="email" default-value="Email"/>
 <property name="phone_number" default-value="Phone-Number"/>
 <standard-property name="default_input" default-value="<input
type=text size=42 maxlength=80"/>
 <command action="save" perform-on="this"
embed="BusinessCardSave.wsp">
 <command action="display,view,save" perform-on="this"
embed="BusinessCardDisplay.wsp">
 <command action="edit" perform-on="this"
embed="BusinessCardEdit.wsp">
</weblet>

Notice that the HTML that defines the three commands for this weblet are in three seperate files. Also
notice that the save command is given twice:

These three files are:

BusinessCardSave.WSP:

<%@ language="javascript" %>
<!-- Save the weblet -->
<%
 if (parameters.organization != null)
 weblet.organization = parameters.organization;
 if (parameters.address != null)
 weblet.address = parameters.address;

 if (parameters.slogan != null)
 weblet.slogan = parameters.slogan;
 if (parameters.parameters != null)
 weblet.name = parameters.name;
 if (parameters.role != null)
 weblet.role = parameters.role;
 if (parameters.email != null)
 weblet.email = parameters.email;
 if (parameters.phone_number != null)
 weblet.phone_number = parameters.phone_number;
 naming.rebind(weblet.standard_property.name);
%>

Notice how a reference to the calling weblet is obtained in the WSP file by using the predefined standard
object weblet:

weblet.organization = parameters.organization;

Also notice how once the weblet's new values have been stored in the weblet it is saved back into the
directory service using the exposed naming object:

naming.rebind(weblet.standard_property.name);

BusinessCardDisplay.wsp:

<%@ language="javascript" %>
<!-- Display the weblet -->
 <table border="0" cellspacing="2" cellpadding="3" width="206">
 <tr bgcolor="#EEEECC">
 <td><font face="Arial, Helvetica, sans-serif" size="-1"
color="#666633">Business
 Card Weblet</td>
 <td align="right" width="26">->Edit<-
</td>
 </tr>
 </table>

 <table border="0" cellspacing="0" width="300">
 <tr bgcolor="#FFFF00">
 <td width="57%" height="34" valign="top"><font size="5"
face="Times New Roman, Times, serif"><weblet:INPLACE-EDIT property-
name="organization"><%==weblet.organization%></weblet: INPLACE-
EDIT> </td>
 <td width="43%" height="34"> </td>
 </tr>
 <tr bgcolor="#FFFF00">
 <td width="57%"><weblet:INPLACE-EDIT property-
name="address"><%==weblet.address%></weblet:INPLACE-EDIT>
 </td>
 <td valign="bottom" width="43%"><i><font size="1" face="Arial,
Helvetica, sans-serif"><weblet:INPLACE-EDIT property-
name="slogan"><%==weblet.slogan%></weblet:INPLACE-EDIT></i></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%"></td>
 </tr>

 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%"><font
size="2"><weblet:INPLACE-EDIT property-
name="name"><%==weblet.name%></weblet:INPLACE-
EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%" height="24"></td>
 <td width="43%" height="24" valign="top"><font color="#FFFFFF"
size="1"><weblet:INPLACE-EDIT property-
name="role"><%==weblet.role%></weblet:INPLACE-EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%" valign="top"><font color="#FFFFFF"
size="1">email: <weblet:INPLACE-EDIT property-
name="email"><%==weblet.email%></weblet:INPLACE-EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%" valign="top"><font color="#FFFFFF"
size="1">voice: <weblet:INPLACE-EDIT property-name="phone-number">
<%==weblet.phone_number%></weblet:INPLACE-EDIT></td>
 </tr>
 </table>

BusinessCardEdit.wsp:

<!-- Edit the weblet -->
 <form method="post" action="?<%==WebletCommand.toURLString()%>">
 <table border="0" cellspacing="2" cellpadding="3">
 <tr bgcolor="#EEEECC">
 <td colspan="3"><font face="Arial, Helvetica, sans-serif"
size="-1" color="#666633">Business Card
Weblet</td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Name:</td>
 <td> </td>
 <td><input type="text" name="name" value="<%==weblet.name%>"
size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Organization:</td>
 <td> </td>
 <td><input type="text" name="organization"
value="<%==weblet.organization%>" size="42" maxlength="80"><td>
</tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Address:</td>
 <td> </td>
 <td><input type="text" name="address"
value="<%==weblet.address%>" size="42" maxlength="80"><td>

 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Slogan:</td>
 <td> </td>
 <td><input type="text" name="slogan"
value="<%==weblet.slogan%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Role:</td>
 <td> </td>
 <td><input type="text" name="role" value="<%==weblet.role%>"
size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Email:</td>
 <td> </td>
 <td><input type="text" name="email" value="<%==weblet.email%>"
size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-serif" size="-
1">Phone-Number:</td>
 <td> </td>
 <td><input type="text" name="phone_number"
value="<%==weblet.phone_number%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>
 <td align="right"><input type="submit" value="Save"></td>
 </tr>
 </table>
 </form>

Wrapping An Existing Portal as a Weblet – eGroups

In this example a Group weblet is created. It is created by taking a portion of an existing portal, named
eGroups, and wrapping eGroups so that its functionality can be reused by OpenPortal. eGroups is a portal
that facilitates the creation of web-based groups. The language WebL is used to manipulate the eGroups
site.

The Group weblet has the following user interface when it receives the display command:

Every Group weblet has the following properties:

• group name
• group address
• group description
• group toolbar

The group toolbar property is interesting. It is inplace-editable, so that a user can click right on it to change
it's menu contents, and then hit save to have it instantly updated!

Every Group weblet has the following commands:

• display
• edit
• save
• start new group
• invite new members
• add group event
• add group poll
• login to your group

Here is the weblet descriptor that describes these properties and commands:

Group.weblet:

<? xml version=”1.0” ?>
<weblet draggable="true">
 <property name="group_name"/>
 <property name="group_address"/>
 <property name="group_description"/>
 <property name="group_toolbar“ inplace-editable="true"

 default-value="

 -->Start new group<--
 -->Invite new members<--
 -->Add Group Event<--
 -->Add Group Poll<--
 -->Login to Groups<--"
 input="<textarea rows=5 cols=30>"/>
 <command action=”start” perform-on=”new group” embed=”Group.wsp”/>
 <command action=”invite” perform-on=”new members”
embed=”Group.wsp”/>
 <command action=”add” perform-on=”groups event” embed=”Group.wsp”/>
 <command action=”add” perform-on=”groups poll” embed=”Group.wsp”/>
 <command action=”login to” perform-on=”your group”
embed=”Group.wsp”/>
 <command action=”display” perform-on=”this” embed=”Group.wsp”/>
 <command action="edit" perform-on="this" embed="this.edit()"/>
 <command action="save" perform-on="this" embed="this.save()"/>
</weblet>

All of the commands funnel into Group.wsp, which does the actual checking of which command was
requested:

Group.wsp:

<%@ language=”webl” %>

<!-- Define all functions -->
<% var startGroup = new fun()
 var page = GetURL("http://www.egroups.com/listman", [.
method="display_startnewlist" .]);

 // manipulate HTML here
 end;

 var inviteMembers = new fun()
 var page = GetURL("http://www.egroups.com/GroupMembersPage",
[.
method="performAction",listName=weblet.group_name,selectedView="all",ne
wMemberName="",Button_InviteNewMember="Invite+new+member".]);

 // manipulate HTML here
 end;

 var addEvent = new fun()
 var page = GetURL("http://www.egroups.com/cal", [. md="a",
listname=weblet.group_name .]);

 // manipulate HTML here
 end;

 var addPoll = new fun()
 var page = GetURL("http://www.egroups.com/vote", [. md="a",
listname=weblet.group_name .]);

 // manipulate HTML here
 end;

 var login = new fun()
 var page = GetURL("http://www.egroups.com");

 // manipulate HTML here
 end;
%>

<!-- Handle all commands -->
<!-- Start new group -->
<% if (WebletCommand.full_command = "start new group")
 startGroup();
 end;
%>

<!-- Invite new members -->
<% if (WebletCommand.full_command = "invite new members")
 inviteMembers();
 end;
%>
<!-- Add Group Event -->
<% if (WebletCommand.full_command = "add group event")
 addEvent();
 end;
%>
<!-- Add Group Poll -->
<% if (WebletCommand.full_command = "add group poll")
 addPoll();
 end;
%>

<!-- Login to your Group -->
<% if (WebletCommand.full_command = "login to your group")
 login();
 end;
%>

<!-- Display this-->
<% if (WebletCommand.full_command = "display this") %>
 <table border="0" cellspacing="2" cellpadding="3" width="206">
 <tr bgcolor="#EEEECC">
 <td><font face="Arial, Helvetica, sans-serif" size="-1"
color="#666633">Group
 Weblet</td>
 <td align="right" width="26">->Edit<-
</td>
 </tr>
 </table>
 <!-- simplified HTML -->
 .
 .
 .
 <td><%==weblet.group_toolbar%></td>

 .
 .
 .
 <td>Group Name:</td>
 <td><%==weblet.group_name%> </td>
 .
 .
 .
 <td>Group Address:</td>
 <td><%==weblet.group_address%> </td>
 .
 .
 .
 <td>Group Description:</td>
 <td><%==weblet.group_description%> </td>
<% end; %>

Note that not all of the WebL script to manipulate the eGroups HTML is in the functions above.

Introduction to Security in the Weblet Foundation

Vision: Support OpenPortals that are completely open or completely closed, and
everywhere in between – and let the users decide which they want through an easy
interface.

OpenPortal allows users to create Sites. One OpenPortal server can have several Sites, all below a top-
level root. Each Site can also have multiple Areas beneath it.

SiteSite

Top-Level
Root

Area Area Area

Each Site and Area can define general policies on what kind of Easy Command Language a user can
execute when within them. Within each Site Users can have Roles, such as Editor, Owner, Member, and
Guest. Within each Area and Site a user's Roles can be used to either restrict or enable ECL commands.

Site Area Role/User ECL Command
Linux Site Main Area Owner Can edit all

The table above shows how one can restrict or allow ECL commands based on Roles, Users, Areas, and
Sites. In this example any user who has the Role of Owner in the Main Area of the Linux Site can edit
everything. The next table shows more examples of restricting commands based on roles and users. In the
first line the user Paolo de Dios is given permission to edit everything ("Can edit all") in the Discussion
Area. In the second line a default security setting is set for everyone ("Default for Everyone") so that
everyone cannot edit anything. Permissions are enforced in the order they are given, so that permissions
higher in the table below are enforced and can over-ride lower permissions.

Site Area Role/User ECL Command
Linux Site Discussion Area Paolo de Dios Can delete all
Linux Site Main Area Default for Everyone Cannot edit all

Sites and Areas can hold other weblet containers, but cannot hold nested Sites or Areas. They can also set
policies on whether children Areas, weblet containers, and weblets can over-ride the security settings of
their parents. For example, in the table below anyone who has the role of being Owner in every Area in the
Linux Site can change children permissions of sub-Areas or weblet containers, while the Default for
Everyone is set so that the everyone cannot set Area permissions but can set a weblet container's
permissions in the Discussion Area.

Site Area Role/User ECL Command
Linux Site All Owner Can set area permissions
Linux Site All Default for Every one Cannot set area permissions
Linux Site Discussion Area Default for Everyone Can set weblet container
permissions

Weblets and weblet containers can also have their own security policies attached to themselves.

A web-based user interface is used to set these policies for each Area, Site, weblet, or weblet container.
They all have the same general form, an exa mple is shown below for setting the properties of a Site named
Linux Site:

The user interface has two sections; a top section in which security settings are set by creating the
appropriate phrase from pull-down menus, and a bottom settings where all the security settings for the site
are listed. There is also a bottom section for assigning users different Roles for Sites. For example, in the
screenshot above the top section has the following security phrase spelled out from the pull-down menus:

In this site Everyone can set security for area

These new phrases can be added to the site by hitting the "Add" button, and the new phrase will be added
after whatever phrase was highlighted in the lower section.

The pull downs for the top-down section are as follows:

In the upper right portion of the user interface is a scrolling list that has all possible ECL commands
enumerated (i.e. "set security for area", "set security for site", etc.). The ECL commands which can have
security set on them are as follows, with descriptions where appropriate.

• set security for area
• set security for site
 These two commands give someone permission to set the security properties for an area or a site.
If someone is allowed to set the security, a form similar to the ones above is returned.
• create weblets that override parent's settings

This gives a user permission to create a weblet that can override the weblet's parent security,
possibly allowing more permissive or restrictive use of the weblet then the parent would provide.
For example, using this setting would allow someone to create an editable Article weblet in an
area where nothing can be edited.

• assign all roles
• assign Owner role
• assign Editor role
• assign Member role
• assign Guest role

These five commands gives a user the power to assign roles to other users in an area or a site. For
example, a user could be given the power to assign the Member role to a new user.

• other (fill in command in box below)
This selection is used for typing in ECL commands that have not been enumerated. This is
commonly used for setting ECL commands on individual weblets (i.e. edit "My Business Card").

• do everything with all weblets
This gives a user free reign over all weblets in an area, though this does not give them permission
to change a site or area's security settings or to assign roles.

• edit all weblets
• view all weblets
• delete all weblets
• clone all weblets

These ECL commands give a user permission to run edit, view, delete, or clone commands on any
weblet.

• set security for all weblets

This allows a user to change the security properties of a weblet; note that this does not include the
ability to change the security permissions of the area or site.

• create all weblets
• create Business Card Weblet
• create Normal Page Weblet
• create Article Weblet
• create Toolbar Weblet

Every available weblet is enumerated and a 'create' option is put into the list. This allows one to
restrict the creation of certain types of weblets to certain users.

• do everything with all Business Card Weblets
• edit all Business Card Weblets
• view all Business Card Weblets
• delete all Business Card Weblets
• clone all Business Card Weblets
• move all Business Card Weblets
• set security for all Business Card Weblets
• do everything with all Normal Page Weblets
• edit all Normal Page Weblets
• view all Normal Page Weblets
• delete all Normal Page Weblets
• clone all Normal Page Weblets
• move all Normal Page Weblets
• set security for all Normal Page Weblets

For each type of weblet all possible commands that can be run on this weblet is enumerated.
Above are two example enumerations for Business Card Weblets and Normal Page Weblets.

The bottom portion of the security form shows all the security settings for the site. Three buttons can be
used to manipulate these: 'Remove', 'Save', 'Add', and 'Change'. Hitting Remove removes a highlighted
security setting from both the client and server. Hitting Save saves a modified ECL command and all
modifications. Hitting Add causes the ECL command that has been specified in the top-portion of the user
interface to be inserted into the bottom portion. Hitting Change loads the selected ECL command into the
top-portion.

There is also a bottom section for assgning users different Roles for Sites. The form to do this is located at
the bottom of the Site form above. The default role for all users can be set with this form. Roles are listed
in a list-box, and can be Removed, Saved, Added, and Changed by clicking on the appropriate buttons and
selecting from the lower pull-downs (i.e. "Brad Neuberg" is an "Owner").

The form for setting an area's security policies looks similar to the site security form:

All that is different is that the Area is already restricted and the ECL command 'set security for site' is
removed upper right box. Also, Areas cannot have their own assigned roles; roles are only assigned from
Sites.

Weblet Containers also have their own security properties form:

The upper-right ECL command box includes all the same commands as the Site box, without the 'set
security for area' and 'set security for site' commands.

Weblets have the simplest security settings:

The upper-right ECL command box has the following commands:

do everything to this weblet
edit this weblet
view this weblet
delete this weblet
clone this weblet
set security for this weblet

Easy Command Language Security Format

Security settings are converted and stored as ECL commandss. This makes it possible to simplify and
encapsulate interacting portions of the Weblet Foundation. This is used in the following sub-systems:

• communication between client and server when the user is setting security properties
using the site security form, the area security form, the weblet security form, and the
weblet container security form

• serializing a weblet's security settings to a flat text file in a local file system through the
JNDI

• interaction on the server side between the JSP files for the site, area, weblet, and weblet
container security forms and the actual java weblet objects

These interactions are shown in the diagram below:

SiteSecurity
Settings

Form.html

<<HTML>>

Client

SiteSecurity
Settings
Form.jsp

<<JSP File>>

Server

SomeSite:Site

<<java class>>

In the Discussion Area Editors can clone all weblets
In the Main Area Guests cannot delete all weblets
In this site Editors can edit all weblets
In this site Members can edit "My Business Card"

<<text file>>

add
button
pushed

In the Main Area
Guests cannot
delete all
weblets

Server

Server

serializes into

initializes
In the Discussion Area Editors can clone all weblets
In the Main Area Guests cannot delete all weblets
In this site Editors can edit all weblets
In this site Members can edit "My Business Card"

This section details how security permissions are transformed into security ECL commands.

 Security ECL commands are pretty much straight translations from the security form:

becomes the security ECL command:

In this site Everyone can set security for area

This becomes the command-URL (if the user is Brad Neuberg):

http://www.openportal.org?command=In+this+site+Everyone+can+set+security+for+area&username=Bra
d+Neuberg&site=Linux+Site&weblet_name=/Linux+Site&weblet_type=Site&openbasis_version=2.0

The context -free grammar of security ECL commands are as follows:

SecurityWebletCommand

 SecurityWebletCommand ::= In Location Identity Permission
WebletCommand

Location

 Location ::= this site | All-areas | this weblet container

All-areas

 All-areas ::= area1 | area2 | area3 ... area n
Discussion: If an area name does not begin with the word "the" or "The", then an optional "the" can be
appended before this name (i.e. "the Discussion Area"). The security forms do this when they are set. If
the area name already has "the" or "The", then the security forms do not add the "the" or "The." For
manually entered security ECL commands the "the/The" can be dropped (i.e. "In Discussion Area....").

Permission

 Permission ::= can | cannot

Identity

 Identity ::= Everyone | everyone | No one | no one | Just me | just
me | Owners | owners | Editors | editors | Members | members

| Guests | guests

WebletCommand

 WebletCommand ::= A valid ECL command
Discussion: To avoid recursion SecurityWebletCommands cannot be used here, except for "set security for
area" and "set security for site" which are actually not security ECL commands but are normal ECL
commands.

Weblet Foundation Security: Architecture and Design Overview
Iteration 1

In order to maintain a secure web environment, security features must be implemented to authenticate users
and weblets in order to verify that all weblet and ECL command operations are from trusted users. In order
to manage security auditing/validation etc, the Weblet Foundation will implement a Security Service as
addition to its service layer architecture. Security Services consists of two main components, the Security
Manager and the Security Agent.

Essentially, the Security Manger is responsible for creating policies, by mapping object sources (weblets,
users, other sites and areas) to sets of permissions for its Security domain, and then dispatching security
agents to user or weblet objects to enforce these policies. Thus, there will be no central choke point for
security enforcement that can be responsible for DoS (Denial of Service) attacks or spoofs, but still
providing a centralized location for the administration of system polices. Security agents are an
enhancement of a ticket based authentication system. Instead of simply encapsulating a single policy
between two objects, security agents encapsulate all operations to validate communications between a
group of objects given a collection of policies or permissions. It keeps weblet and user objects lightweight
by delegating additional security logic to another component that can be easily maintained and changed.

In order to ensure that all weblets will be under the auspices of the security manager, a weblet container
must register itself with the security manager. The security manager would then assign a security agent to
the weblet container.

These agents will be responsible for enforcing security policies for weblets belonging to the same set.

Security Services
Security Manager

Sec.
Agent

Sec.
Agent

Sec.
Agent

Sec.
Agent

Weblet
Container

Weblet
Container

Security Manager

Agent

Agent

The security manager will keep track of and manage these agents. It will manage security agent lifetimes
and operations for logging and auditing. This architecture can even be extended to support session tracking

Security Manager:

• Keeps track of object sources
• Manages security agent lifetimes and activities
• Instantiates/assigns agents to specific domains

Security Agent:

• Queries weblets/weblet containers/sites in its immediate protection domain
• Maintains a permissions collection
• Maintains a policies collection
• Enforces security policies
• Has the same life cycle as its container/site

High Risk Areas/Open Issues:

• Relatively complex implementation
• Performance/scalability issues. Security should not take a relatively large portion of processing

time.
• Client side authentication issues, e.g. sending passwords over the Internet.

o Options
§ SSL 3.0
§ Client certificates
§ Base64 encryption

Weblet Container

Weblet
Security manager

User object

Sec. agent

User Object

Weblet Foundation: Security Services Architecture
Iteration 1

 The security service architecture is modeled after a security manager and agent design
pattern, whereby a security agent enforces all security policies applicable to the immediate
objects in the site or area level.

In order to make itself known to the security system, the weblet container must register itself with
the security manager. The security manager queries the weblet container/site for its security
properties and then instantiates and assigns a security agent to that weblet/site container

The security agent is responsible for maintaining all the weblets in its protection domain. It
queries all weblets added into the container for security properties and instantiates and maintains
new permission objects. These permission objects in turn establish policies associated with this
permission. In this way, a security check can be established by first seeking an operation in the
permission list and then searching through the policy collections for an object-operation-object
mapping. For example, if a user, Paolo, attempts to edit an article weblet, the security agent will
search through the available operations in the permission list. Upon finding an edit operation, it
will search the policy lists for a "Paolo" to "article weblet" mapping. A similar traversal is done
to change permissions and policy mappings using the get/set methods. Perhaps the only
operation that is not delegated to a security agent is the destruction of a weble t container. The
security agent in charge of the parent container/directory context handles that operation.

Security Agent
containerID
webletList
permissionsCollection
allowOp

getChildProperties()
newPermission()
checkOperation()
getChildren()
getPermission()

registers, tracks, assigns agents
Security Manager

agentList

getWebletSecurityProperties()
assignAgent()

Weblet Container
name
id
other property
webletList

0..1

0..n

Permission
permission
childObject
policyCollection

setPermission()
getPermission()
newPolicy()

Policy
policy
childObject

setPolicy()
getPolicy()
evaluate()

0..1
0..n

Weblet

name
id
security property1
security property2

queries child
Security Agent

containerID
webletList
permissionsCollection
allowOp

getChildProperties()
newPermission()
checkOperation()
getChildren()
getPermission()0..1

0..n

Weblet Container
name
id
other property
webletList

request child weblet list

0..n

0..1

OpenPortal System and Software Architecture Description

Version 1.0.0.0

Table of Contents

1.Introduction
 1.1 Purpose
2.Architectural Analysis
 2.1 Component Model
 2.2 Behavior Model
 2.3 Enterprise Model
 2.3.1 Logical Component Classifications

2.3.2 Logical Behavior Classifications
3.System design
 3.1 Design Views

3.1.1 Logical Component View
 3.1.2 System Layered View
 3.1.3 System Deployment View
 3.2 Object Model
 3.2.1 Design Component Specifications
 3.2.2 Object specifications
 3.3 Operations Model

3.3.1 Detailed Behaviors
 3.3.2 Operations Specifications
 3.4 Class Model
4.Common Definition Language
5.Appendix

Introduction

 The purpose of the System and Software Architecture Definition is to describe the structural,
relational and behavioral mappings of the different components of OpenPortal. It attempts to map the
requirements and responsibilities of OpenPortal into its software level abstractions and structure.
Implementation specific details, such as algorithms and method specifications will be left to Javadoc source
code documentation. This document aims at concurrency with major releases of the system.

Architectural Analysis

Component Model

 The Component Model is derived from OpenPortal’s system responsibilities. OpenPortal consists
of four custom components that utilizes a number of design components.

Component COM-01
Defining Quality Responsible for creating and maintaining user profiles
Name User (org.openportal.user)
Attributes Contains persistent user data collection
Behaviors Represent user weblet service requests from OpenPortal
Relationships weblet, and security
Roles ProfileGenerator, user manager
Constraints
 Dependencies openportal
 Cardinality 1
COM-01 Relationships

user

(from openportal)

security

(from openportal)

authenticated by

openportal

(from org)
provides user data to

Component COM-02
Defining Quality Creates weblets and processes WSP and Weblet Command

requests
Name Weblets(org.openportal.weblet)
Attributes
Behaviors Create weblet, process WSP and weblet commands
Relationships OpenPortal, directory, security
Roles Weblet factory, weblet compiler
Constraints
 Dependencies GNU JSP, JNDI, security
 Cardinality 1

COM-02 Relationships

directory

(from javax)

security

(from openportal)

weblet

(from openportal)

openportal

(from org)

requests security and
directory services through

authenticates
requests through

links weblets using

Component COM-03
Defining Quality Mediator of requests from other OpenPortal components
Name OpenPortal (org.openportal)
Attributes
Behaviors Handle user requests, mediate service interaction
Relationships User, weblet, security, directory
Roles Request handler, OpenPortal service manager
Constraints
 Dependencies JNDI
 Cardinality 1

COM-03 Relationships

openportal

(from org) directory
<<DCOM-01>>

(from javax)

security

(from openportal)

weblet

(from openportal)

mediates requests from

provides access using

provides directory services to

user

(from openportal)

allows access to

Component COM-04
Defining Quality Maintainer and enforcer of security policies
Name Security (org.openportal.security)
Attributes
Behaviors Authenticate users, verify user requests, verify weblet command

directives
Relationships Weblets, user
Roles Security agent, security manager
Constraints
 Dependencies user
 Cardinality 1
COM-04 Relationships

security

(from openportal)

weblet

(from openportal)

user

(from openportal)
authenticates and verifies
requests from

authenticates requests to

Behavior Model

The behavior model describes the different behaviors invoked by external actors or components that
the system must handle. It is derived from the system responsibilities.

Identifier BH-01
Name Login to OpenPortal
Trigger User submits a login and password
Description Logs user into their home area, otherwise into the public area
Pre-Condition User has a login profile
Post-Condition User gets placed in their home area page
Input ID, password
Output User home page
Refers to
Exception No user profile, anonymous login

The user is not authenticated upon first entry into the OpenPortal website. Upon entry into the main page,
the user is designated as guest and is allowed to view the public services availed by the main page. To
navigate other sites and areas listed in the openportal root, authentication may be required.

CheckPassword

Update Session

Find User Profile

Make New User Profile

<<uses>>
User

Place in OpenPortal Root

Login User

Report Authentication Error

Authenticate User

<<extends>>

<<extends>>

Identifier BH-02
Name User navigates OpenPortal site and area locations
Trigger Hyperlink
Description The user clicks on a hyperlink to follow an internal reference
Pre-Condition Target page exists, user has appropriate viewing rights
Post-Condition User is allowed to GET the requested page
Input CommandURL
Output HTML page
Refers to
Exception Page not found, user not allowed

The user is allowed to navigate the different sites and areas in OpenPortal provided that they have the
permissions. Users are also assigned roles that have inherent permissions that will vary the behavioral use
case of the system. Depending on a user’s role or class, they may or may not have to be authenticated.

CheckID

Report Authentication Error

Authenticate User <<extends>>

VisitSite

<<uses>>

User

Visit Root

Update Session

<<uses>>

<<uses>>

VisitArea

<<uses>>

Update Session

<<uses>>

Identifier BH-03
Name Edit Weblet
Trigger User Clicks on Edit
Description Allows user to edit content, along with a weblet’s properties,

including security, positional and GUI elements.
Pre-Condition User has the proper permissions
Input Hyperlinked ECL CommandURL
Output Edit form(type of edit form dependent on permission)
Refers to
Exception Permission denied

Modify Properties

Modify Security Permissions

Authenticate User

Check Permission

Report Authentication Error

<<uses>>

User
Edit Weblet

<<extends>>

<<uses>>

Save Weblet State and Properties
<<uses>>

<<uses>>

Display Weblet

Upload Graphic

Modify Content

<<uses>>

<<extends>>

Identifier BH-04

Name Add or Delete a weblet
Trigger Add or delete weblet command directive
Description Adds or deletes a weblet from a container
Pre-Condition User has the appropriate permissions
Input [add or delete <weblet name>] commandURL or

hyperlinked ECL commandURL
Output Updated container page
Refers to
Exception Permission denied, weblet not found

User
Update Container Properties and

State

Update Container

Display Weblet

Check Permission

Report Authentication Error

Add Weblet

Authenticate User
<<uses>>

Delete Weblet

Display Weblet

System Design

Design View

Logical Component View
System Layered View
System Deployment View

Object Model

Design Component Specifications

These Components are derived from COTS products that must be configured or modified to work with
OpenPortal.

Identifier DCOM-01
Defining Quality Naming and directory subsystem for weblet persistence
Name JNDI (Java Naming and Directory Interface)
Attributes
Assigned Behaviors Lookup, search, bind, unbind
Relationship OpenPortal Hub, Weblet Manager, Security Manager
Possible Roles Directory manager, weblet caretaker
Constraints Should provide access to the filesystem
Implementation Java library

Identifier DCOM-02
Defining Quality Processes WSP directives and scriplets
Name JspServlet (PolyJSP engine)
Attributes
Assigned Behaviors Process WSP scriplets, return HTML markup block
Relationship WSP Engine
Possible Roles WSP Compiler
Constraints Should only process scriplets and not JSP tags.
Implementation Java based Interpreter package with a servlet interface

Identifier DCOM-03
Defining Quality Helps parse weblet command
Name GNU RegExp – GNU Regular Expression Library
Attributes
Assigned Behaviors Parse command
Relationship WebletCommand Parser
Possible Roles Command tokenizer
Constraints Should only return valid weblet command tokens
Implementation Java based library

Identifier DCOM-04
Defining Quality Parses and interprets JavaScript
Name ECMAScript

Attributes
Assigned Behaviors
Relationship WSPEngine
Possible Roles Interpreter
Constraints
Implementation Java based library and interpreter

Identifier DCOM-05
Defining Quality Parses and interprets WebL
Name WebL3.0
Attributes
Assigned Behaviors Interpret
Relationship WSPEngine
Possible Roles Interpreter
Constraints
Implementation Java based library and interpreter

Identifier DCOM-06
Defining Quality Parse and process script files into XML structures
Name XML4J
Attributes
Assigned Behaviors Parse weblet descriptor
Relationship WSPEngine, Weblet Descriptor parser
Possible Roles Xmlparser
Constraints
Implementation Java based library

OpenPortal Component Specifications

1. Main OpenPortal Component Framework.

The Main OpenPortal framework establishes the relationships between the various sub-
components that constitute OpenPortal. The OpenPortal framework is an extension of the weblet weblet
framework. It extends the generic AbstractWebletManager to add security and user management
capabilities. It is also the main component responsible for setting up an initial directory context that
interfaces with JNDI (DCOM-01). All user HTTP requests are handled by the RequestHandler servlet and
are processed as commandURL’s. These commandURL’s are used by the OpenPortalWebletManager to
determine which weblet should be executed. The WebletManager also acts as a hub that allows weblets to
communicate with the security and user managers.

Identifier OBJ-01
Defining Quality Handles user requests and outputs weblet responses
Name RequestHandler
Object Interactions Process user requests into CommandURLs

Passes requests to the OpenPortalWebletManager
States Handling request, handling response
Constraints
Component membership COM-01 OpenPortal
Refers to
Implementation Java Servlet

Identifier OBJ-02
Defining Quality Encapsulates user request and its context

Name CommandURL
Object Interactions OBJ-01 RequestHandler
States
Constraints
Component membership OpenPortal
Refers to
Implementation Java class object

Identifier OBJ-03
Defining Quality Manages user requests to weblets and mediates weblet

requests to the user and security managers
Name OpenPortalWebletManager
Object Interactions Request Handler, WSP Engine, ECL Engine, User Manager,

Security Manager
States
Constraints
Component membership Openportal, weblet
Refers to
Implementation Java class object

InitialDirContext
(from directory)

<<Interface>>

IRequestHandler
(from weblet)

<<Interface>>

IWebletManager
(from weblet)

<<Interface>>

CommandURL

command
weblet
site
area
user

CommandURL()
setCommandURL()
getCommand()
getSite()
getArea()
getUser()
getWeblet()

(from weblet)

OpenPortalRequestHandler

req : HttpServletRequest
res : HttpServletResponse

parseCommandUrl()
updateSession()

(from openportal)

<<servlet>>

<<instantiates>>

SecurityManager

securityAgents : Hashtable

getUser()
verifyUser()
checkPassword()

(from security)

UserManager

users : Hashtable

getUser()
checkPassword()
findUser()
getUserInfo()

(from user)

OpenPortalWebletManager

getRoot()
exec()
getCommand()
getWeblet()
verifyUser()
getUser()

(from openportal)

<<refers to>> <<extends>>

2. Weblet Framework

 The weblet framework is one of the major components of the OpenPortal system. It is responsbile
for creating and managing weblets. It defines an interface for creating weblets and weblet containers
through the weblet factory interface. The weblet manager is responsible for mediating requests to the
weblet factory.

Identifier OBJ-04
Defining Quality Creates concrete weblet types
Name OpenPortal weblet factory
Object Interactions OpenPortal weblet manager
States
Constraints
Component membership Weblets
Refers to
Implementation Java class object

OpenPortalWebletContainer

webletList : Vector
securityAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

OpenPortalWeblet

containerID
containerAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

IWeblet
(from weblet)

<<interface>>
OpenPortalWebletFactory

(from openportal)

OpenPortalWebletManager

getUser()
getRoot()
exec()
getCommand()
getWeblet()

(from openportal)

1

1

1

1

IWebletFactory
(from weblet)

<<Interface>>

IWebletContainer
(from weblet)

<<Interface>>

<<extends>>

<<instantiates>>

<<instantiates>>

The weblet manager is also responsible for interfacing with the ECL and WSP engines. It also maintains a
top level initial directory context with the OpenPortal Root object.

IRoot
(from weblet)

<<Interface>>

OpenPortalWeblet

containerID
containerAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)
OpenPortalWebletContainer

webletList : Vector
securityAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

WSPEngine
(from weblet)

ECLEngine

parseCommand()
verifyCommand()
compileCommand()

(from ecl)

OpenPortalWebletManager

getUser()
getRoot()
exec()
getCommand()
getWeblet()

(from openportal)

1

*

1

*

1

*

1

*

1

1

1

1

1

1

1

1

OpenPortalLoginWeblet

exec()

(from security)

OpenPortalRoot

display()

(from openportal)

AbstractWebletManager
(from weblet)

Identifier OBJ-05
Defining Quality Encapsulates a specific webpage or site functionality
Name OpenPortalWeblet
Object Interactions WebletServerPage, weblet descriptor, weblet factory, weblet

manager
States
Constraints
Component membership Weblet
Refers to
Implementation Java class object, WSP and weblet descriptor files

The basic OpenPortal weblet class implemets a standard weblet interface. It is requried to implement the
DirContext interface so that it can be stored in the filesystem using the JNDI. Weblets consist of the

weblet base class and the descriptor used to set the properties of the weblet. The weblet may consists of
many WSP script files that embed content into weblet using the WSP engine.

DirContext
(from directory)

<<Interface>>

WebletDescriptor
(from weblet)

WebletServerPage
(from weblet)

OpenPortalWeblet

containerID
containerAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

1 11 1 1..*1 1..*1

IWeblet
(from weblet)

<<interface>>

Document
(from dom)

<<xml4j>>

<<imports>>

Identifier OBJ-06
Defining Quality Contains other weblets
Name OpenPortalWebletContainer
Object Interactions OpenPortalWebletManager, Weblet
States
Constraints
Component membership Weblets
Refers to
Implementation Java class object, WSP and weblet descriptor files

Weblet containers implement the basic weblet container interface. They are required to implement the
DirContext interface so that they can be stored in the filesystem using the JNDI. The weblet container class
extends the weblet base class, adding capabilities for referencing and embeding weblets. Weblet
Containers utilize weblet descriptors to initialize its properties and to determine which weblets it contains.
Embeded WSP files are are processed using the WSP engine. The weblets referenced by the container are
processed in the order they are specified in the weblet container descriptor.

DirContext
(from directory)

<<Interface>>

WebletContainerDescriptor
(from weblet)

WebletServerPage
(from weblet)

OpenPortalWebletContainer

webletList : Vector
securityAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

SecurityAgent
(from security)

IWebletContainer
(from weblet)

<<Interface>>

Document
(from dom)

<<xml4j>>

<<imports>>

OpenPortal utilizes a heirarchical containment structure. These containers include the site root, a site, and
an area. These different containers extend the base weblet container class and implements their respective
container interfaces. Each container type places additional constraints in the nesting of weblets. The
RootContainer can reference any weblet continer. A SiteContainer can only reference AreaContainers and
the weblet class. AreaContianers can only reference the weblet class.

OpenPortalWebletContainer

webletList : Vector
securityAgent
properties : Hashtable
command : Vector

loadWebletDesc()
saveWebletDesc()
parseAutoMagic()
run()

(from openportal)

OpenPortalSite
(from openportal)

OpenPortalArea
(from openportal)

OpenPortalRoot

display()

(from openportal)

IRoot
(from weblet)

<<Interface>>

ISite
(from weblet)

<<Interface>>

IArea
(from weblet)

<<Interface>>

<<extends>>

<<extends>>

<<extends>>

IWebletContainer
(from weblet)

<<Interface>>

Part of the standard weblet services of OpenPortal is the LoginWeblet contained at the root level of
OpenPortal. In addition to logging users into OpenPortal, it is responsible for interfacing with the user
manager to create new user profiles.

Identifier OBJ-07
Defining Quality Logs users in, interfaces with user manager to create new user

profiles.
Name LoginWeblet
Object Interactions OpenPortalRoot
States
Constraints
Component membership OpenPortal
Refers to
Implementation Java class object, weblet

IRoot
(from weblet)

<<Interface>>

OpenPortalRoot

display()

(from openportal)

OpenPortalLoginWeblet

exec()

(from security)

3. ECL subsystem

Most command directives, enclosed with the “[“ and “]” or the “à” and “ß” delimiters, are
specified in an edit form or in the case of a security settings form, compiled from a series of pull
down menus. Essentially, these commands pass through as either a singular block(s) of directives
or part of a larger document context.

ECL commands are parsed through the parser, and turned into expression objects so that they can be more
easily mapped into their corresponding command methods. After parsing, these expression objects are
passed to the ECLProcessor for mapping to native objects. The command processor will execute the action
associated with the command. It will find the corresponding HTML that realizes the command and pass it
back through the chain of responsibility and then to the user.

In order to ensure the security of a specific command directive, the command must go through the security
agent of the current containment context before it can be executed. The ECL engine will be able to verify
the command by asking the weblet manager to run the command URL through the security agent. If a
command directive is verified to be safe it will be allowed to execute in the command processor.

Identifier OBJ-08
Defining Quality Provides the interface to the parser and processor
Name ECL Engine
Object Interactions Weblet Manager
States
Constraints Command mappings are specified in the weblet descriptor only
Component membership Weblet
Refers to
Implementation Java class object

Identifier OBJ-09
Defining Quality Parses ecl commands
Name ECL Parser
Object Interactions ECL Engine, ECL Expression
States
Constraints Can only parse commands based on the grammar defined by

the regular expression
Component membership Weblet
Refers to
Implementation Java class object

Identifier OBJ-10
Defining Quality Process expression tokens into HTML markup
Name ECL Processor
Object Interactions ECL Engine, ECL Expression
States
Constraints
Component membership Weblet
Refers to
Implementation Java class object

Identifier OBJ-11
Defining Quality Object version of the ECL command
Name ECL Expression
Object Interactions ECL parser,
States
Constraints
Component membership Weblet
Refers to
Implementation Java class object

RE
(from regexp) ECLExpression

(from ecl)

IECLParser
(from ecl)

<<Interface>>
IECLProcessor

(from ecl)

<<Interface>>

IECLEngine
(from ecl)

<<Interface>>

ECLParser
(from ecl)

ECLProcessor
(from ecl)

ECLEngine

parseCommand()
verifyCommand()
compileCommand()

(from ecl)

1

1

1

1

1

1

1

1

OpenPortalWebletManager

getRoot()
exec()
getCommand()
getWeblet()
verifyUser()
getUser()

(from openportal)

11 11

<<instantiates>>

<<imports>>

4. WSP subsystem
 The WSP engine is an interface to PolyJSP engine (DCOM-02). It is responsible for passing
“.wsp” files for processing and receiving the results for the weblet manager. It conforms to the WSPEngine
interface for providing WSP services to the weblet manager.

Identifier OBJ-12
Defining Quality Interfaces with PolyJsp engine for wsp file processing
Name WSPEngine
Object Interactions DCOM-02 PolyJSP

OpenPortalWebletManager
States
Constraints
Component membership Weblet
Refers to
Implementation Java class object

PageMarkup
(from weblet)

<<DHTML>>
IWSPEngine

(from weblet)

<<Interface>>

JspServlet
(from jsp)

WSPEngine
(from weblet)

OpenPortalWebletManager

getUser()
getRoot()
exec()
getCommand()
getWeblet()

(from openportal)

<<extends>>

PolyJSP Engine
<<COTS>>

5. Security Services

The security service architecture is modeled after the master and slave design pattern, whereby a security
agent enforces all security policies applicable to the immediate objects in the site or area level.
In order to make itself known to the security system, the weblet container must register itself with the
security manager. The security manager queries the weblet container/site for its security properties and
then instantiates and assigns a security agent to that weblet/site container

The security agent is responsible for maintaining all the weblets in its protection domain. It queries all
weblets added into the container for security properties and instantiates and maintains new permission
objects. These permission objects in turn establish policies associated with this permission. In this way, a
security check can be established by first seeking an operation in the permission list and then searching for
a matching user-to-operation mapping. A policy file is also used to determine which permissions are
mapped to a particular weblet.

For example, if a user, Paolo, attempts to edit an article weblet, the security agent will search through the
available operations in the permission list. Upon finding an edit operation, it will search the policy lists for
"Paolo". A similar traversal is done to change permissions and policy mappings using the get/set methods.
Perhaps the only operation that is not delegated to a security agent is the destruction of a weblet container.
The security agent in charge of the parent container/directory context handles that operation.

Identifier OBJ-13
Defining Quality Manages security agents
Name Security Manager
Object Interactions OpenPortalWebletManager
States
Constraints
Component membership Security
Refers to
Implementation Java class object

Identifier OBJ-14
Defining Quality Enforces security policies for a weblet container
Name Security Agent
Object Interactions Security Manager, OpenPortalWebletContainer
States
Constraints Can only enforce the policies that it is defined in the policy file.
Component membership Security
Refers to
Implementation Java class object

Identifier OBJ-15
Defining Quality Maintains a set of permissions for a given command
Name Permission
Object Interactions SecurityAgent
States
Constraints
Component membership Security
Refers to
Implementation Java class object

Identifier OBJ-16
Defining Quality Maintains a permission to code source(weblet and weblet

container) mapping
Name Policy
Object Interactions Security Agent
States
Constraints
Component membership Security
Refers to
Implementation text

Permission
(from security)

SecurityManager

securityAgents : Hashtable

(from security)

Policy
(from security)User

User()

(from user)

SecurityAgent
(from security)

HttpSession

putValue()

(from http) <<refers to>>

ISecurityManager
(from security)

<<Interface>>

ISecurityAgent
(from security)

<<Interface>>

6. User Manager

The User Manager is responsible for creating and maintaing a collection of users that have access to
OpenPortal. It implements the user manager interface. New user profiles are created using the
UserProfileGenerator class.

Identifier OBJ-17
Defining Quality Manages the collection of user objects
Name User Manager
Object Interactions OpenPortalWebletManager
States
Constraints Can only be accessed through the weblet manager
Component membership User
Refers to
Implementation Java class object

Identifier OBJ-18
Defining Quality Generates user profiles
Name UserProfileGenerator
Object Interactions UserManager, User
States
Constraints Only create profiles based on userID and passwords

Only accessible by the User Manager
Component membership User
Refers to
Implementation Java class object

Identifier OBJ-19
Defining Quality Represents user information
Name User
Object Interactions User Manager, UserProfileGenerator
States
Constraints Only stores basic information about a user. Id and password

only
Component membership User
Refers to
Implementation Java class object

IUserManager
(from user)

<<Interface>>

UserProfileGenerator

createUser()
saveUser()

(from user)

UserManager

users : Hashtable

getUser()
checkPassword()
findUser()
getUserInfo()

(from user)

1

1

1

1

User

User()

(from user)

1

0..*

1

0..*
HttpSession

putValue()

(from http) <<refers to>>

Operations Model

Operations Specifications

1. Initial Access to OpenPortal

OpenPortal : OpenPortal
RequestHandler

req : Http
ServletRequest

session : Http
Session

usermgr :
UserManager

response :
HttpServlet

command :
CommandURL

root : Open
PortalRoot

webletmgr :
OpenPortal

getSession
create session

Request Root Site
from Weblet
Manager

Get
anonymous
user class

Place
Anonymous
User identifier
object into the
session

putValue()

getSite(Root)

display()

println()

getWriter()

Display Root index
page by first getting
HTML of page

Output HTML

CommandURL()

setCommandURL()

parseCommandUrl()

putValue()

Place command url
into session object

getUser()

getUser()

2. User Login (Weblet Access)

login : Open
PortalLogin

req : Http
ServletRequest

session :
HttpSession

usermgr :
UserManager

response : HttpServlet
Response

security :
SecurityManager

command :
CommandURL

requesthandler :
OpenPortalRequest

webletmgr :
OpenPortal

get

getParameter(

Verify the
username and
password

Redirect identified
user back to the
OpenPortal root with
authentication result

verifyUser(

parse

Command

setCommand

exec(Command

exec(Command

Return result up the chain
of responsibility

println(

putValue(

Update the
session object
with username

get

get

get

Get the target
weblet specified in
the commmand
URL

verifyUser(get

find

check

get user from
user manager

and check

3. New User (Creating a new user profile)

request : Open
PortalRequest

command :
CommandURL

req : Http
ServletRequest

webletmgr : OpenPortal
WebletManager

usermgr :
UserManager

res : Http
Servlet

newuser : Userprofilegen : UserProfile
Generator

getSession()

CommandURL()

parseCommandUrl()

setCommandURL()

exec(CommandURL)

getCommand()

createUser()

getUserInfo(CommandUrl)

println()

Send notification of
registration
success

Create new user
from info in
CommandURL

Execute
command URL

Get userid and
password information
from the command
URL object

createUser() User()

saveUser()

Create new
User object

Save new user
object to
persistence layer

Data Model

Weblet Descriptor Data Type Definition

<!DOCTYPE WebletDescriptor [
<!-- Weblet -->
<!ELEMENT weblet (property*, standard-property*, command*)>
<!ATTLIST weblet draggable (true | false) false>
<!-- Weblet Container -->
<!ELEMENT webletcontainer (property*, standard-property*, command*)>
<!ATTLIST webletcontainer draggable (true | false) false>
<!-- Property -->
<!ELEMENT property EMPTY>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property default-value CDATA #REQUIRED>
<!ATTLIST property inplace-editable (true | false) true>
<!ATTLIST property draggable (true | false) false>
<!ATTLIST property inplace-input CDATA "<input type=text size=20>">
<!-- Standard-Property -->
<!ELEMENT standard-property EMPTY>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property default-value CDATA #REQUIRED>
<!ATTLIST property inplace-editable (true | false) true>
<!ATTLIST property draggable (true | false) false>
<!ATTLIST property inplace-input CDATA "<input type=text size=20>">
<!-- Command -->
<!ELEMENT command EMPTY>
<!ATTLIST command action CDATA #IMPLIED>
<!ATTLIST command perform-on CDATA #IMPLIED>
<!ATTLIST command full-command CDATA #IMPLIED>
<!ATTLIST command embed CDATA #REQUIRED>
]>

Appendix

