

What Is OpenPortal?

OpenPortal is an open-source Java-server platform under the GNU Public License (GPL)
and LGPL that makes a new generation of web sites possible. These new websites are
open, growable, transportable, changeable, and interoperable. OpenPortals all share the
following characteristics-

The 10 Characteristics of an OpenPortal

1. Everyone is a user.
2. Everything is changeable and editable.
3. Users can add, create, and modify sites extensively into unknown new

directions.
4. An OpenPortal is as open or closed as you like – and everywhere in between.
5. All the interesting stuff happens when openness is taken to the point of

craziness.
6. Websites become discussions, and discussions become websites.
7. The website supports its own growth.
8. The walls between web sites are broken down, and OpenPortals can

interoperate.
9. If they don't want to play, wrap 'em as components.
10. You may not even know you're on an OpenPortal (because you're not).

These OpenPortal Ten Commandments are explained below.

1. Everyone is a user.

Traditionally, most websites divide the people who make, design, and use a website into
seperate categories:

A Programmer creates the programs that run on a server. These programs help to
dynamically generate the site.
A Graphic Designer creates the html templates that help generate the site.
An Owner lays claim to the server and sets the direction of the site.
A Content Creator creates the actual stuff that is on the site.
An Editor decides which of the content created by the Content Creators is worth keeping.
An Administrator takes care of the site on a systems level.

An last, but not least, is the poor User who is left to consume the website made by his
superiors.

Programmers, Graphic Designers, Owners, Content Creators, Editors, and Administrators
all do their work directly on the server side using special tools that are seperate from the
website itself, and are usually located in the same physical location:

User

N

Web
Browser

Web Server

Programmer Graphic Designer

Owner

Content Creator

Editor

Administrator

Compiler Design
Tool

Money &
Equipment

Word
Processor

Special
Tools

Shell
Access

Exhibit A - How Folks Get their Jobs Done - People on the server-side use special tools to make and maintain the website, while users use a
browser to access the website.

Users consume the website through their browsers – yummy. What happens if a user wishes
to somehow become a Programmer, Graphic Designer, Owner, Content Creator, Editor,
or Administrator? Sorry, too bad – stay in your place, behind the browser!

In the last two years portals have attempted to change this paradigm a bit with a feature
known as personalization, which usually boils down to the following three features:

• change your background color!
• personalize things with this predefined cookie cutter!
• here's some generic content from our partners!

Portals are too afraid to truly allow personalization, to truly understand what this means,
because it would involve a redefinition of what web sites are. Hence OpenPortal's
appearance.

In OpenPortal everybody starts out as a User behind the browser – there is no one on the
server side!

User

N

Web
Browser

OpenPortal Server

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

Then, in various ways, users gain Nametags that give them extra privileges to become the
roles they wish and desire:

User

N

Web
Browser OpenPortal Server

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

User

N

Web
Browser

Any user, whether they are in Bangladesh or Bridgeport, can potentially gain any role.
This is the power of making everyone a user.

How do these OpenPortal users fulfill their job roles?

2. Everything is changeable and editable.

Once you begin to assume that anyone anywhere in the world can potentially lead an
OpenPortal website through a browser, you must provide some sort of browser-based
tools to help these people.

A first response in providing these tools is to build specialized html web pages, dynamic
html web pages, or java applets that act on the web site, just like how in the old model
graphic designers and programmers used design tools and compilers seperate from a web
server to modify a web site:

Graphic Designer

Design
Tool

separate from
and acts on

Graphic
Design

Tool (ex.
Dreamwe

aver)

Web
page

Content Creator

Word
Processor

separate from
and acts on

Word
Processor

(ex.
Microsoft

Word)

Web
page

The Old Model

Graphic Designer

separate from
and acts on

Special web
page that
mimicks

WYSIWYG
design tool

Another
web
page

Content Creator

separate from
and acts on

Another
web

page

Mimicking the Old Model on the Web

N

Web
Browser

N

Web
Browser

Special web
page that
mimicks

WYSIWYG
word

processor

This approach is known as an application-centric approach. This is the PC approach –
the politically correct Personal Computer.

OpenPortal is different. It takes a nod from technologies like OpenDoc that put the focus
on documents and not on applications . In OpenPortal everything is a document. These
documents are known as weblets because they live on the web. There are weblets that
represent every type of document you can imagine: Business Card weblets, Article
weblets, Comment weblets, Toolbar weblets, Poll weblets, and even weblets that
represent the User and the Site itself:

Business Card Weblet

Article Weblet

Poll Weblet

Not only does a weblet encapsulate a document type, it also includes all the tools
necessary to modify and change that weblet. You can imagine the weblet including a
miniature editor customized just for that weblet. This is the heart of the document-centric

approach – the focus is on documents, not applications. Applications are ancillary to
documents and embedded within the documents themselves. For example, the diagram
below shows how a Business Card weblet includes a tiny editor inside of it that can be
invoked by clicking on an Edit hyperlink:

Note that even while OpenPortal provides a new way to change weblets and web pages
through browsers, it does not necessarily foreclose the old way of doing things. We
Embrace and Extend those as well ;) OpenPortal caches all web pages, weblets, and
templates as flat text files on the server-side, directly mirroring the OpenPortal web-site
into the filesystem, so that it can be administered by perl scripts, text editors, graphic
design tools, etc. by those lucky-enough to be on the server-side.

3. Users can add, create, and modify sites extensively into unknown new
directions.

Remember that OpenPortal is not just about editing specific parts of a website – it is
about letting users build a website into entirely new directions unforeseen by the original
web-site creator. To support this, weblets need to be more than just editable – they need
to be addable, removable, and createable by users across all of an OpenPortal site. Easy
Command Language (ECL) is the tool that makes this possible. ECL is a simple
command-language that allows a user to directly issue commands to an OpenPortal
server. ECL not only lets power-users manipulate weblets, but it also provides the tools
necessary to build user-interfaces that can manipulate weblets for beginning users. In
future versions of OpenPortal ECL will be hidden to everyone but the power-user by
more sophisticated dynamic html and dynamic html graphical user-interfaces.

The concept behind ECL is that users tell an OpenPortal server what they would like to
do in plain English:

• Edit this weblet
• Display my business card
• Add new article
• Login
• Display all members
• Delete this weblet

There are two ways in which ECL commands are issued by the user, either by clicking on
ECL hyperlinks or by issuing ECL commands in the edit form of a weblet.

Issuing ECL Commands by Clicking on Hyperlinks

ECL commands are “hidden” behind OpenPortal hyperlinks:

so that when a user clicks on the hyperlink the associated ECL command is sent to the
OpenPortal server:

Issuing ECL Commands in the Edit Form of a Weblet

ECL commands can also be entered by the user into edit forms by surrounding the ECL
command with double brackets:

or by surrounding the ECL command with arrows:

Double-brackets instructs the server to run an ECL command right when the Save button
is hit. In the example above:

when the user clicks the Save button, the add Business Card Weblet ECL command will
be run by the OpenPortal server and the results of the command will be embedded in the
web page, which in this case is a new business card weblet:

Surrounding the ECL command with arrows instructs OpenPortal to automagically
hyperlink this command when the web page is returned and to run the ECL command
when the user clicks on it. In the example from above:

when the user clicks on the Save button, OpenPortal does not execute the ECL command
but automagically hyperlinks it instead:

when the user clicks on the hyperlink then the ECL command is run:

With these two forms of ECL users can build an entire user interface:

When saved this page looks as follows:

When these links are clicked on then the ECL command is performed. For example, if
the user clicks on the link Add Business Card Weblet Here, a new business card weblet is
added:

It should be mentioned at this point that weblets don’t play alone – they are usually
grouped together in a weblet container. A weblet container is just a weblet that supports
adding, removing, and creating new weblets inside of it. A good example of a weblet
container is the Normal Page Weblet Container. This is a weblet that can hold other
weblets and displays them on a single web page:

Normal Page Weblet View Edit Clone Delete

These are the weblets on this page:

Business Card
Weblet

Edit

BaseSystem, Inc.
2840 Broadway #336
New York, NY 10025
www.basesystem.com

 Create. Maintain. Share.

 Brad Neuberg
 Vice President of Technology

 email: brad@basesystem.com

 voice: 212-853-3602

Business Card
Weblet Edit

The OpenPortal Project

www.openportal.org

Where websites become
discussions, and discussions
become websites.

 Paolo de Dios
 System Architect

 email: paolo@columbia.edu

 voice: 212-555-5555

Poll Weblet Edit

My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet
Vote

[Results | Polls]

Vote
[Results | Polls]

Comments:217 |
Votes:18274

Each of the weblets in the Normal Page Weblet Container can still be edited:

These are the weblets on this page:

Business Card Weblet

Name: Brad Neuberg

Organization: BaseSystem, Inc.

Address: 2840 Broadway #336
New York, NY

Slogan: Create. Maintain. Share.

Role: Vice President of Technology

Email: brad@basesystem.com

Phone-Number: 212-853-3602

 Save

Business Card
Weblet Edit

The OpenPortal Project

www.openportal.org

Where websites become
discussions, and discussions
become websites.

 Paolo de Dios
 System Architect

 email: paolo@columbia.edu

 voice: 212-555-5555

Poll Weblet Edit

My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet

What happens if you hit the edit Easy Command Language hyperlink for the Normal
Page Weblet? You would get the following:

Each of the embed statements refers to each of the weblet's embedded in the weblet container. If you remove one of the
embed statements:

and hit save, then the corresponding embedded weblet will be removed from the weblet
container:

Normal Page Weblet View Edit Clone Delete

New Page New Category New
 Weblet

Sample Page

 Today: Tuesday, June 28, 1999

Created by Brad Neuberg. no clones.
Last updated on Mon 12/14/1998. Created on 12/9/1998.

These are the weblets on this page:

Business Card
Weblet Edit

BaseSystem, Inc.
2840 Broadway #336
New York, NY 10025
www.basesystem.com

 Create. Maintain. Share.

 Brad Neuberg
 Vice President of Technology

 email: brad@basesystem.com

 voice: 212-853-3602

Poll Weblet Edit

My favorite weblet is the

Business Card Weblet

Poll Weblet

Toolbar Weblet

Email Weblet

Groups Weblet
Vote

[Results | Polls]
Comments:217 |
Votes:18274

The ECL embed command can also be used to embed weblets that have a name that are
on different pages on the OpenPortal site. Some weblets can have a name, which is
usually in the title bar of the weblet:

This weblet name is usually set through the edit form. A weblet does not necessarily
need to have a name; it will usually be given a default one if none is given. Using this
weblet name one can embed weblets from all over the site on any OpenPortal page by
using the embed command. As will be explained in section 4, "An OpenPortal is as open
or closed as you like – and everywhere in between," all OpenPortal pages live in Sites
which can have Areas. An OpenPortal can have multiple Sites, such as the "Linux Site",
the "Windows 2000 Site", etc., and in each Site there can be multiple Areas, such as
"/Linux Site/Main Area", "/Linux Site/News Area", "/Windows 2000 Site/Main Area",
etc. When using the embed command, the full name of the weblet to be embedded must
be given. For example, let's say that on the "Linux Site" there is an Area named
"Repository Area". In this Repository Area could be a weblet named "Standard
Toolbar":

From anywhere in the Linux Site this Standard Toolbar could be embedded onto any
OpenPortal page by using the embed command:

The embed command is considered the default ECL command, so in the text field above
the word embed doesn't even have to be entered:

["/Linux Site/Repository Area/Standard Toolbar"]

When the save button is hit the Standard Toolbar is embedded in the page:

The embed command is very useful for embedding items that are used throughout an
OpenPortal site, such as the Standard Toolbar from the example above, or for referring to
items when typing in a weblet, such as referring to your business card or a seperate
discussion that has occured.

Automatic hyperlinks to named weblets can also be created using the ECL arrows --> and
<--. One simply surrounds the weblet name with these arrows and OpenPortal will
automatically create a hyperlink to this weblet:

When the save button is hit the following is returned:

If a weblet is referenced that does not exist, the tiny words create this are added and
hyperlinked to the end of the unknown weblet:

When the create this hyperlink is clicked on the user is taken to a page that allows them
to pick out what kind of weblet to make:

Once this weblet has been defined, the original page will display the link without a create
this hyperlink:

4. An OpenPortal is as open or closed as you like - & everywhere in between.

It is an extremely powerful notion to allow users to completely reconfigure and extend a
site. With this ability comes the fear that any redefinition of power can cause.
OpenPortal does not force you to have an open site and to make everything changeable –
though it certainly encourages you to. Instead OpenPortal has an extensive
permissioning system based on the English abilities of Easy Command Language, which
allows people to run an OpenPortal as open or as closed as they wish.

OpenPortal allows users to create Sites. One OpenPortal server can have several Sites,
all below a top-level root. Each Site can also have multiple Areas beneath it.

SiteSite

Top-Level
Root

Area Area Area

Each Site and Area can define general policies on what kind of Easy Command Language
a user can execute when within them. Within each Site Users can have Roles, such as
Editor, Owner, Member, and Guest. Within each Area and Site a user's Roles can be
used to either restrict or enable ECL commands.

Site Area Role/User ECL Command
Linux Site Main Area Owner Can edit all

The table above shows how one can restrict or allow ECL commands based on Roles,
Users, Areas, and Sites. In this example any user who has the Role of Owner in the Main
Area of the Linux Site can edit everything. The next table shows more examples of
restricting commands based on roles and users. In the first line the user Paolo de Dios is
given permission to edit everything ("Can edit all") in the Discussion Area. In the second
line a default security setting is set for everyone ("Default for Everyone") so that
everyone cannot edit anything. Permissions are enforced in the order they are given, so
that permissions higher in the table below are enforced and can over-ride lower
permissions.

Site Area Role/User ECL Command
Linux Site Discussion Area Paolo de Dios Can delete all
Linux Site Main Area Default for Everyone Cannot edit all

Sites and Areas can hold other weblet containers, but cannot hold nested Sites or Areas.
They can also set policies on whether children Areas, weblet containers, and weblets can

over-ride the security settings of their parents. For example, in the table below anyone
who has the role of being Owner in every Area in the Linux Site can change children
permissions of sub-Areas or weblet containers, while the Default for Everyone is set so
that the everyone cannot set Area permissions but can set a weblet container's
permissions in the Discussion Area.

Site Area Role/User ECL Command
Linux Site All Owner Can set area permissions
Linux Site All Default for Every one Cannot set area
permissions
Linux Site Discussion Area Default for Everyone Can set weblet
container permissions

Weblets and weblet containers can also have their own security policies attached to
themselves.

A web-based user interface is used to set these policies for each Area, Site, weblet, or
weblet container. They all have the same general form, an example is shown below for
setting the properties of a Site named Linux Site:

The user interface has two sections; a top section in which security settings are set by
creating the appropriate phrase from pull-down menus, and a bottom settings where all
the security settings for the site are listed. There is also a bottom section for assigning
users different Roles for Sites. For example, in the screenshot above the top section has
the following security phrase spelled out from the pull-down menus:

In this site Everyone can set security for area

These new phrases can be added to the site by hitting the "Add" button, and the new
phrase will be added after whatever phrase was highlighted in the lower section.

The pull downs for the top-down section are as follows:

In the upper right portion of the user interface is a scrolling list that has all possible ECL
commands enumerated (i.e. "set security for area", "set security for site", etc.). The ECL
commands which can have security set on them are as follows, with descriptions where
appropriate.

• set security for area
• set security for site
 These two commands give someone permission to set the security properties for
an area or a site. If someone is allowed to set the security, a form similar to the ones
above is returned.
• create weblets that override parent's settings

This gives a user permission to create a weblet that can override the weblet's
parent security, possibly allowing more permissive or restrictive use of the weblet
then the parent would provide. For example, using this setting would allow
someone to create an editable Article weblet in an area where nothing can be
edited.

• assign all roles
• assign Owner role
• assign Editor role
• assign Member role
• assign Guest role

These five commands gives a user the power to assign roles to other users in an
area or a site. For example, a user could be given the power to assign the Member
role to a new user.

• other (fill in command in box below)
This selection is used for typing in ECL commands that have not been
enumerated. This is commonly used for setting ECL commands on individual
weblets (i.e. edit "My Business Card").

• do everything with all weblets

This gives a user free reign over all weblets in an area, though this does not give
them permission to change a site or area's security settings or to assign roles.

• edit all weblets
• view all weblets
• delete all weblets
• clone all weblets

These ECL commands give a user permission to run edit, view, delete, or clone commands on any
weblet.

• set security for all weblets
This allows a user to change the security properties of a weblet; note that this does
not include the ability to change the security permissions of the area or site.

• create all weblets
• create Business Card Weblet
• create Normal Page Weblet
• create Article Weblet
• create Toolbar Weblet

Every available weblet is enumerated and a 'create' option is put into the list. This
allows one to restrict the creation of certain types of weblets to certain users.

• do everything with all Business Card Weblets
• edit all Business Card Weblets
• view all Business Card Weblets
• delete all Business Card Weblets
• clone all Business Card Weblets
• move all Business Card Weblets
• set security for all Business Card Weblets
• do everything with all Normal Page Weblets
• edit all Normal Page Weblets
• view all Normal Page Weblets
• delete all Normal Page Weblets
• clone all Normal Page Weblets
• move all Normal Page Weblets
• set security for all Normal Page Weblets

For each type of weblet all possible commands that can be run on this weblet is
enumerated. Above are two example enumerations for Business Card Weblets
and Normal Page Weblets.

The bottom portion of the security form shows all the security settings for the site. Three
buttons can be used to manipulate these: 'Remove', 'Save', 'Add', and 'Change'. Hitting
Remove removes a highlighted security setting from both the client and server. Hitting
Save saves a modified ECL command and all modifications. Hitting Add causes the ECL
command that has been specified in the top-portion of the user interface to be inserted
into the bottom portion. Hitting Change loads the selected ECL command into the top-
portion.

There is also a bottom section for assgning users different Roles for Sites. The form to
do this is located at the bottom of the Site form above. The default role for all users can
be set with this form. Roles are listed in a list-box, and can be Removed, Saved, Added,
and Changed by clicking on the appropriate buttons and selecting from the lower pull-
downs (i.e. "Brad Neuberg" is an "Owner").

The form for setting an area's security policies looks similar to the site security form:

All that is different is that the Area is already restricted and the ECL command 'set
security for site' is removed upper right box. Also, Areas cannot have their own assigned
roles; roles are only assigned from Sites.

Weblet Containers also have their own security properties form:

The upper-right ECL command box includes all the same commands as the Site box,
without the 'set security for area' and 'set security for site' commands.

Weblets have the simplest security settings:

The upper-right ECL command box has the following commands:

do everything to this weblet
edit this weblet
view this weblet
delete this weblet
clone this weblet
set security for this weblet

An interesting feature that balances being too open with being too closed is the clone
feature that some weblets support. It is sometimes desirable to have some weblets be
uneditable, such as a research paper that has been posted on an OpenPortal. However, it
might also be useful to allow others to clone this paper and then let them make changes
only on the clone, but not on the original:

5. All the interesting stuff happens when openness is taken to the point of craziness.

While OpenPortal can be used to build old, boring closed sites, all the fun starts to
happen when you push and edge out into crazy openness. This is when the proverbial
sh*t hits the fan. Wouldn’t it be interesting to make a closed site using OpenPortal but
allow anyone to clone that website and change it to make their own? Imagine the
interesting results that would occur as the mutations of your website went from one
clone, to two clones, to four clones, to sixteen, growing exponentially and changing each
time?

Original
Site

Clone of
Original

Site

Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Clone of
Clone of
Original

Site

Some of these clones would be worthless, but wouldn’t one of them be a gem that takes
your website in a brilliant direction unforeseen by you? Isn’t this the open-source idea –
applied to websites?

In future versions of OpenPortal not only will the website be changeable, but users
themselves will be able to create entirely new weblets, extending OpenPortal in
directions unforeseen to the OpenPortal team. OpenPortal is itself built with weblets:
because of this, OpenPortal is a system that supports the evolution of its own process of
evolution – the entire foundation of OpenPortal itself, not just its content, will be
changeable through OpenPortal itself!

Some shouts from the audience:
 “It will collapse if you make it that open...”
“But you can’t allow such openness!”
“No one needs that level of openness anyway...”
“Every other company and person will destroy you if you’re that open!”

Weren’t these the original criticisms railed against the Internet, and isn’t it damn more
interesting that its closest competition, the closed monolithic telecom network? The
same criticisms were shot at the World Wide Web, which is vastly more interesting than
the closed Information Superhighway peddled by the cable companies.

OpenPortal is about building a massively open system that can handle and tolerate its
own rapid evolution and change. While you can build a traditional closed system with
OpenPortal, the more you experiment with crazy openness on your own OpenPortal the
more interesting your site will become.

6. Websites become discussions and discussions become websites.

When users have the ability to create entirely new pieces of a website, the website itself
simply becomes one giant bubbling conversation. But on OpenPortal chaos does not
ensue because weblets provide just enough order to keep things structured. If editing an
OpenPortal page were more like writing with a WYSIWYG (What-You-See-Is-What-
You-Get) editor like Microsoft Word, then there would be absolutely no structure to keep
things ordered. With a few phrases of ECL users can create entirely new site weblets,
article weblets, comment weblets, etc. in response to other site weblets, article weblets,
comment weblets, etc. What once used to be static pages can now branch out into
entirely new sections created by users. The Main Page can be filled with Comment
weblets, or any type of weblet.

"But don't web-based threaded discussion boards already provide a place for
discussions?"

Yes, if you only care about having flat discussions that have no more structure than a
hierarchy. OpenPortal allows you to leap out of a thread-discussion boards structure into
entirely new directions. Free yourselves from the shackles of threaded-discussion
boards! Imagine being able to respond to a comment with an entirely new OpenPortal
Site, made while your typing the response It's not about WYSIWYG – it's about
discussion, but at a higher-level than simple threaded discussion boards can handle.

7. The website supports its own growth.

An OpenPortal allows the creation of new Sites and Areas within it. From any edit form
a user can enter the ECL command create Site Weblet or create Area Weblet:

Unlike other weblets, the Site or Area weblet will not be embedded in the page you type
the command in – this is why it can be typed from anywhere in an OpenPortal. When the
user hits save a form will come back to create the new site:

The user can click the Create Area button to create a new Area in this site:

The user can now begin populating this area with new weblets.

The user that creates a new Site instantly become the Owner of that Site and can set
permissions and give out roles. The original creator is therefore free to make the Site as
open or as closed as he wishes.

8. The walls between web sites are broken down, and OpenPortals can interoperate.

Let's examine the state of the web today. Major websites and portals sit like monolithic
cathedrals on the web landscape:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

Each one of these cathedrals wants to be the cathedral, sucking in and controlling
everyone else – none of them would ever dare to have their fortresses interoperate, except
through corporate mergers!

Enter OpenPortal. In a future OpenPortal release weblets will become mobile weblets,
able to move between OpenPortals. OpenPortals will be able to form networks with each
other. This entire OpenPortal network will be open, just like the Internet and the World
Wide Web. Using mobile weblets OpenPortals will be able to support the following
between them:

• Weblets from one site can be automagically embedded and linked to using Easy
Command Language

• Every user will get a clipboard – using dynamic html they can drag any weblet
onto this clipboard from one OpenPortal site and paste it onto another. In the
background the two OpenPortals are exchanging the mobile weblet.

• Subscribing to a weblet amounts to simply copying and pasting a weblet from a
remote OpenPortal. A link is retained to the old remote weblet, so that whenever
the old weblet changes the new "pasted" weblet changes as well.

• Compound documents of weblets can be created, with some of the weblets
actually being from other OpenPortal sites and being updated whenever the
original changes

• A universal log-in network can be created across OpenPortals for higher-level
user-services

• Users can "carry" their web-sites around with them from OpenPortal to
OpenPortal, as if it were in their back pockets.

• Many other exciting features

It will be exciting when OpenPortals begin to interoperate in future versions. Each of
these OpenPortals will start as tiny rain drops on the internet, insignificant when
compared to the huge puddles that are the major portals and major web sites; however,
these OpenPortals will actually work together:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

Cannot Interoperate

Interoperable

OpenPortal

OpenPortal

OpenPortal

Can W
rap

But when a thousand rain-drops begin to merge together, forming larger and larger
puddles, the portals and large sites will have to listen: web-sites are not cathedrals, they
are a bazaar. In the beginning we were nothing but a few rain-drops, but when a few
rain-drops coalesce they suck in all the puddles:

Fortress Yahoo

Fortress Excite

Fortress MSN

Fortress Go
Network

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal
OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal

OpenPortal
OpenPortal

The OpenPortal Network

This phenomenon has occured in the past for many of the major internet technologies:
internet email, the World Wide Web, etc. The diagram below illustrates how in 1990
most of the major online services and software packages that supported email, such as
Compuserve, AOL, Lotus Notes email systems, and others, could barely support
interoperability of email systems between competing services, if they even tried. Around
this time SMTP internet email servers began to proliferate; they were tiny and located
mostly in a university setting:

AOL Email
System

Lotus Notes
Email Systems

Compuserve
Email Systems

MCI-Mail Email
Systems

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

Cannot Interoperate

In
tero

p
erab

le

SMTP

SMTP

SMTP

Can W
rap

Email Systems About ~1990

Before anyone knew what happened these tiny servers had surrounded most of the major
online services, conglomerating themselves into one giant network that actually
supported interoperability between themselves and their competition:

AOL Email
System

Lotus Notes
Email Systems

Compuserve
Email Systems

MCI-Mail Email
Systems

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP
SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP

SMTP
SMTP

The SMTP Network

These diagrams illustrate what OpenPortal really is: a light-weight component-level
standard agreed upon by websites, called weblets, which are controlled by the users
through an OpenPortal.

It is only through the openness of the bottom-up process that we can build an
interoperable web controlled and built by its users. OpenPortal is the mp3 of web-site
technology. Hopefully if you can -->change the technology<--, you can -->change the
rules<--.

9. If they don't want to play, wrap 'em as components.

We can't expect the big boys to play nice when OpenPortal comes along, so OpenPortal
includes a controversial technology: the ability to wrap portions of other, non-OpenPortal
websites as weblets. For example, the weblet below wraps a portion of the Excite
Communities website as a weblet:

Here is another web portal service wrapped as a weblet. In this case it wraps a portion of
a website known as eGroups as a weblet, to reuse its group functionality within an
OpenPortal without anyone even knowing it actually makes calls back to the eGroup
website:

Both of these weblets can now be mixed and combined with other weblets, all on the
same OpenPortal page. Some of the other weblets could themselves actually be wrappers
around other websites. OpenPortal can then use these weblets to force the websites to
interoperate, or to provide a unified portal to the user based on many other websites
functionality.

10. You may not even know you're on an OpenPortal (because you're not).

Some people can choose to throw most of OpenPortal away and just use the Weblet
Framework (see the document "Creating a Weblet") A weblet is a reusable piece of web-
functionality that uses Easy Command Language and html as its front-end and two
technologies known as weblet descriptors and Weblet Server Pages (WSP) on the middle-
tier. Weblets can wrap potentially any back-end technology, whether it is JavaBeans,
relational databases, CGI-BIN scripts, or even other websites. Technically, a weblet is
nothing more than a bundle of properties, ECL commands, and template scripts. These
are all declared in a file known as a weblet descriptor. Here is the weblet descriptor for a
Business Card Weblet:

<? xml version="1.0" ?>
<weblet>
 <!—The Business Cards properties: name, organization,
slogan, role,
 email, and phone number -->
 <property name="name" default-value="Your Name"/>
 <property name="organization" default-value="Your
Organization"/>
 <property name="slogan" default-value="Your Slogan"/>
 <property name="role" default-value="Your Role"/>
 <property name="email" default-value="Your Email
Address"/>
 <property name="phone_number" default-value="Your Phone-
Number"/>
 <!—The Business Cards commands: display, edit, and save
-->
 <command full-command="display this"
embed="BusinessCard.wsp"/>
 <command full-command="edit this"
embed="BusinessCard.wsp"/>
 <command full-command="save this"
embed="BusinessCard.wsp"/>
</weblet>

This weblet descriptor is just a flat-text file that sits in the filesystem. It establishes the
properties and commands for a business card weblet. Notice the three <command>
tags. These establish the edit, display, and save commands for the weblet. You can
choose to throw away all of these commands and create your own new commands,
completely dropping the edit command if you want. For example, you could create a
"send card owner email" command and a "add card owner to contacts list" command by
adding the following to lines to the weblet descriptor file:

 <command full-command="send card owner
email"embed="BusinessCard.wsp"/>

 <command full-command="add card owner to contacts list"
embed="BusinessCard.wsp"/>

Now, if the user enters the ECL commands "send card owner email" anywhere in the edit
form of this weblet or clicks on a hyperlink titled send card owner email, then this
command will be found in the weblet descriptor file and run.

Every command in a weblet is associated with a Weblet Server Pages(WSP) file that is
executed when the command is executed by the user:

 <command full-command="edit this"
embed="BusinessCard.wsp"/>

This WSP file is just like Java Server Pages (JSP) or Active Server Pages (ASP) (it's
actually just a subset of the two), and contains a mix of html and java, javascript, or webl
that is executed on the server side. In the future anything could be called from the embed
parameter, whether it's a perl script, COM control, PHP script, server-side include, or
Frontier script. In this way you can expose the functionality of sophisticated server-side
perl scripts as simple human executable ECL commands.

Creating a Weblet

The Basic Weblets

Before we begin to create weblets, we must examine what kinds of weblets are

possible. Most weblets can be divided into two types: property weblets and service
weblets. Property weblets are very simple; they are just a list of properties that are
strings. For example, a business card weblet could consist of five basic properties: name,
organization, email, phone-number, and address. The diagram below is a simple property
weblet with three properties: Property 1, Property 2, and Property 3. A display template
can then display these properties in a web browser. The <%=weblet.Property1%>
expression is a Weblet Server Pages (WSP) phrase that displays the value of Property1.
Property weblets don't just include a template to display themselves in html; they also
include an edit form that can be generated on demand to change a weblet's properties.

Property1 = value1

Property2 = value2

Property3 = value3

Display Template

Property1: <%=weblet.Property1%>
Property2: <%=weblet.Property2%>
Property3: <%=weblet.Property3%>

Weblet

Property Weblet

Display Template Output

Property1: value1
Property2: value2
Property3: value3

Edit Form

The second kind of weblet is a service weblet. This kind of weblet wraps an

underlying service and then exposes these services as Weblet Commands. This can be
used to wrap other web-technologies, like perl scripts or Java Server Pages (JSP) files, or
to offer easy to use services through OpenPortal. In the example below a web-based
email system that was written in perl is wrapped by a weblet that exports email
commands, such as Add User. These commands could then be used from any weblet by
entering àAdd Userß, which would cause the Weblet Command parser to automatically
hyperlink Add User and initiate that action when clicked on. While a property weblet
provides a form to change its properties, service weblets usually have configure forms to
configure the services. An example configuration form is shown below that allows a
user configure the email weblet through a web browser.

Weblet

Service Weblet

Configuration Form

Perl Web-Based
Email Scripts

Weblet Commands

Add User
Remove User
Send Email
Get Email

Using Exported Actions

<H1>Some Toolbar</H1>
-->Add User<--
-->Send Email<--

Resulting HTML

Some Toolbar
Add User
Send Email

 Service weblets and property weblets are not mutually exclusive; most weblets
will probably be a mix of the two. For example, a weblet could provide some properties
that are in-place editable as well as export some services
.

Different Skills, Different Needs

There are many different kinds of users with different needs. The Weblet Base divides
these users into two types: those on the server-side who have direct shell access to an
OpenPortal server, and those on the client-side who are operating through a browser.

Creating a Weblet on the Server-Side

Many computer programming languages seperate what a program does from how the
program does it. This is called seperating the what from the how. For example, one can
specify that a program sorts items (the what) from how the sorting algorithm actually
works (the how). The C language does this by seperating variable and function
declarations into a header file and the actual C code for the header file into a source file.
Java has the ability to seperate the what into something called an interface, while the
actual how is taken care of by a Java class that implements the interface. There are many
good reasons to seperate what a program does from how it actually performs it. One is
that it makes programs easier to maintain and change, since one can easily change how a
program actually works "under-the-hood" without changing what it actually does.

A similar concept is the Model-View-Controller pattern. In this design pattern a model
describes what something does while a view-and-controller describes how the model is
visually presented and controlled by the user. The model contains no presentation logic;
it simply simulates some object (i.e. it is a model). The view and controller modules are
usually combined together into one, since it is natural to specify how something looks
along with how a user manipulates the view. As an example of the model-view-
controller pattern, one could have a model that simulates a business card, providing
methods to get and set this business card's properties. A seperate view and controller
module could display this business card visually on a monitor and allow a user to
manipulate the business card using a mouse. Java Server Pages (JSP) follows this
pattern; in JSP a JavaBean acts as a model, while a JSP page manipulates this JavaBean
model to create an HTML presentation and to respond to user requests through the
browser. The model-view-controller pattern allows one to change how a system looks
and is controlled without affecting the model. In the business card example, one could
provide all types of new presentations and responses to user input for this business card
model without having to change the model.

Creating weblets integrates both principles. Following the principle of seperating the
what of a weblet from its how, a weblet consists of two pieces: one piece promises the
what of the weblet, exposing the properties and commands that the weblet supports,
while the other piece provides the actual how that gives the weblet it's functionality:

Property1

Weblet Descriptor

Property2

Property3

Command1

Command2

Command3

Describes the commands a weblet is
capable of doing, and what

properties a weblet has

Actual functionality
implemented by

.............<% if (
WebletCommand.full_command ==
"Command1") { %>

<H1>You requested
Command1!</H1>
<% } %>.............

Actually implements the functionality
for this weblet

the what of a weblet

Weblet Server Pages
the how of a weblet

Following the second principle, these two pieces can be seen as the model and view-
controller for the weblet:

Property1

Weblet Descriptor

Property2

Property3

Command1

Command2

Command3

Describes the commands a weblet is
capable of doing, and what

properties a weblet has

Presentation and
flow of control

defined by

.............<% if (
WebletCommand.full_command ==
"Command1") { %>

<H1>You requested
Command1!</H1>
<% } %>.............

Provides the presentation that
determines how the weblet is

presented

the model of a weblet

Weblet Server Pages
the view-controller of a weblet

These two weblet pieces are contained in two seperate files, a weblet descriptor file and a
Weblet Server Pages (WSP) file. A weblet descriptor file has the file extension .weblet,
while a WSP file has the extension .wsp. A weblet descriptor file declares the commands
and properties that a weblet supports, and also specifies which WSP file to execute for
which commands. A WSP file contains scripting code and HTML presentation code.

Sequence of Actions for Weblet Descriptor File and Weblet Server Pages File

When a user issues a weblet command, such as "edit", a specific weblet descriptor is
found for the type of weblet that the command is performed on. In the example below
the weblet type is a Business Card.weblet. Inside this weblet descriptor is a list of all the
commands that the weblet supports. In this case there is only one command, "edit."
Every weblet command is associated with a Weblet Server Pages (WSP) file. In the
example below the "edit" command is associated with the WSP file Business Card.wsp.

Since the user requested the "edit" command, the associated WSP file Business Card.wsp
is executed and the HTML results are returned.

Weblet Descriptor

<weblet>
 <command action="edit" embed="BusinessCard.wsp">
</weblet>

Business Card.weblet

Weblet Server Pages

<H1>HTML that defines the business card's edit form
goes here</H1>
<% // a scriptlet block to check for edit conditions %>

Business Card.wsp

User clicks on hyperlink

Command tag for "edit" is found

WSP script associated with
"edit" command tag is
executed

HTML is output

Weblet Descriptor Files

A weblet descriptor file is written in XML. It begins with a standard XML directive:

<? xml version="1.0" ?>

Next comes the declaration of a weblet:

<? xml version="1.0" ?>
<weblet>

If the weblet is a weblet container than this tag would be

<? xml version="1.0" ?>
<webletcontainer>

If a weblet is a service weblet, then the attribute service-weblet should be set to true:

<weblet service-weblet="true">

By default this is set to false. There can only be one copy of this weblet if it is a service-
weblet (i.e. it is a singleton). If someone enters a weblet command without any target:

-->Login User<--

Then this command will automatically be sent to the one weblet that has this command.
This allows one to export weblet commands that are available anywhere in the site as
services. In the Login User example above, a Login weblet could be created that is a
service weblet which exports this command.

After the weblet tag comes the declaration of a property:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>

This declares that the weblet has a property named property1 and that the default-value
given to this property when a new weblet of this type is created is defaultValue1. The
default-value argument is optional, and if not given then default-value for a property is
just the empty string "". The name of a property must be between a-z, A-Z, 0-9, or the
special characters underscore _.

A weblet can have several properties:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>

All weblets share certain standard-properties, such as an owner or the date the weblet
was created. These standard-properties do not need to be declared in the weblet
descriptor, but it is sometimes useful to over-ride one of their default values:. All
standard properties are defined with the <standard-property> tag.

 <? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>

This tag over-rides the standard-property defaul_input, which has to do with the inplace-
editing feature of weblets (this is described below).

Command declarations come after property declarations, describing the commands that
the weblet supports:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>

This tag declares that the weblet has a command performSomeAction onSomeObject, and
when this command is activated (say by a hyperlink), then the Weblet Server Pages file
named someFile.wsp should be executed and its HTML results embedded.

A weblet can have several commands:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>

The action attribute usually identifies some verb, such as edit, set, and display, while the
perform-on attribute is usually a direct object of the verb, such as this, properties,
business card. Multiple actions and perform-on's can be specified by using a comma:

<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="add,create" perform-on="this"
embed="anotherFile.wsp"/>

This new command tag states that whenever the weblet commands "add this" or "create
this" is requested by the user, the WSP file named anotherFile.wsp is executed and its
results are embedded. Using commas to specify several actions or perform-on's is useful
for specifying a weblet command that may have several different ways of being
expressed. For example, the weblet commands "add this" and "create this" are basicly
equivalent, and commas allow this to be expressed as one command tag.

Instead of providing the parts of speech (i.e. the action and the perform-on) for a
command, the full command can be provided through the full-command attribute:

<? xml version="1.0" ?>
<weblet>
 <property name="property1" default-
value="defaultValue1"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command full-command="some long command"
embed="someFile.wsp"/>

Every command tag must provide the embed attribute. This provides a script file that is
executed when the command is requested by the user. This script file is passed a
reference to the weblet itself, the weblet command that was requested by the user, and the
request and response objects that are a part of the servlet API; this is covered in more
detail in the section on Weblet Server Pages. The WSP filename that is given in the
embed attribute is within the Java Naming Directory Interface (JNDI) namespace; if the
filename has no directory slashes at the beginning of it, it is searched for in the weblet's
local directory.

Other scripting languages and technologies can be called other than Weblet Server Pages.
It should be possible to make JSP and ASP scripts callable from the embed attribute,
though this is not planned for the current release. Currently the only technology other
than WSP that can be called are java methods in the weblet itself. A method on the
weblet class itself can be called by using the "this" operator and the method name:

 <command full-command="some long command"
embed="this.someMethod()"/>

This will call the method someMethod() on the weblet itself when the command specified
is encountered. This is useful for calling default methods in the weblet base-class for
certain default actions. For example, when a weblet-container receives the "add"
command it should call a predefined method in the WebletContainer base class named
addWeblet(:

<weblet-container>

 <command action="add" perform-on="this"
embed="this.addWeblet()"/>

Any method that is called from the embed tag must be able to take the weblet itself as a
reference, the weblet command, and the request and response objects as arguments.

Command tags are not exclusively executed; if the weblet command requested by the
user is declared in several command tags, then each of the scripts listed by these tags will
be run one after another and their output will be concatenated together. For example, if a
weblet has the following two command tags:

<command action="save" perform-on="this"
embed="this.saveWeblet()"/>
<command action="save,display" perform-on="this"
embed="someFile.wsp"/>

and the weblet command "save this" has been requested by the user, then the first
command tag will execute first by calling this.saveWeblet(), followed by the second
command tag which will execute someFile.wsp and concatenate its output onto the first
output.

Many times the perform-on attribute will be set to "this." Since the perform-on attribute
is meant to be the direct-object of the action, it is useful to have a short-hand way of
deducting whether a requested weblet command actually refers to the weblet defined in
the weblet descriptor itself. It is impossible and inflexible to hard-code the actual name
of the weblet into the perform-on attribute. For example, if there is a business card
named "Brads Business Card", and a user requests the weblet command 'edit "Brads
Business Card"', this could be hard-coded as:

<command action="edit" perform-on="\"Brads Business
Card\"">

However, it would be useful if the system automatically checked to see whether the
weblet descriptor that is being called matches the perform-on attribute; if so, it converts
the value of perform-on in the original weblet command into the word "this." In the
example above, if the weblet that is being called is named "Brads Business Card" and the
target of the "edit" command is "Brads Business Card", then the value of the perform-on
attribute in the actual weblet command variable, WebletCommand, is changed to "this".
This means that the above command tag can be converted to:

<command action="edit" perform-on="this">

which is much more flexible and generalized and less dependent on the actual name of
the weblet.

A set of Dynamic HTML properties are also defined for the <weblet> tag and the
<property> tag. The attribute draggable can be added to either a <weblet>, <weblet-
container>, or <property> tag:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-
value="defaultValue2"/>
 <property name="property3" default-
value="defaultValue3"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command full-command="some long command"
embed="someFile.wsp"/>
</weblet>

The draggable attribute states that either the weblet, weblet-container, or property is
draggable. The WSP script that is called can check this property, and can either honor it
or not when attempting to create the javascript and Dynamic HTML that is part of
making weblets drag and droppable. If the draggable attribute is left off it defaults to
false.

Another Dynamic HTML attribute is the inplace-editable attribute. This attribute is
similar to draggable in that it can only be placed either on a <property> tag, and denotes
that the property can be edited simply by clicking on the element:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-value="defaultValue2"
inplace-editable="true"/>
 <property name="property3" default-value="defaultValue3"
inplace-editable="false"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>

 <command full-command="some long command"
embed="someFile.wsp"/>
</weblet>

If the inplace-editable attribute is left off it defaults to true. Like the draggable attribute,
underlying WSP scripts can check whether a given property has the inplace-editable
attribute set to true and decide whether to honor this flag. It is merely a suggestion to the
underlying presentation WSP.

When a property that is inplace-editable is clicked on, it is replaced by some kind of form
input. The default is that the property is replaced with a standard <input type=text> tag,
though this default can be over-ridden by setting the standard-property default_input to
something else:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="property1" default-value="defaultValue1"
draggable="true"/>
 <property name="property2" default-value="defaultValue2"
inplace-editable="true"/>
 <property name="property3" default-value="defaultValue3"
inplace-editable="false"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80>"/>
 <command action="performSomeAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command action="anotherAction" perform-
on="onSomeObject" embed="someFile.wsp"/>
 <command full-command="some long command"
embed="someFile.wsp"/>
</weblet>

For any property which has had inplace-editable be set to true and which does not define
its own custom input, the default_input is used for this property when it is clicked on.
For example, in the above weblet descriptor block when property2 is clicked on in a
browser it is replaced with the default_input, which is <input-type=text
size=42 maxlength=80>. Individual inplace-editable properties can also provide
their own inplace-input attribute for what kind of input they are replaced with when
clicked on:

<property name="property2" default-value="defaultValue2"
inplace-editable="true" inplace-input="<textarea>"/>

This will replace property2 with a <textarea> when it is clicked on rather than the
default_input of <input-type=text size=42 maxlength=80>. Note that for both the
default_input standard-property and the inplace-input attribute only a form input type

may be given. This form input must not define the name or value attributes of the input,
and cannot include more than one tag. The inplace-editing engine automatically fills
these values in according to certain characteristics.

<property name="property2" default-value="defaultValue2"
inplace-editable="true" inplace-
input="<textarea>something</textarea>"/>
INCORRECT

<property name="property2" default-value="defaultValue2"
inplace-editable="true" inplace-input="<textarea
wrap=virtual>"/>
CORRECT

<property name="property2" default-value="defaultValue2"
inplace-editable="true" inplace-input="<input type=text
name=property2>"/>
INCORRECT

<property name="property2" default-value="defaultValue2"
inplace-editable="true" inplace-input="<input type=text
value=something>"/>
INCORRECT

A final example weblet descriptor is provided for a business card weblet:

BusinessCard.weblet:

<? xml version="1.0" ?>
<weblet draggable="true">
 <property name="name" default-value="Your Name"/>
 <property name="organization" default-value="Your
Organization"/>
 <property name="slogan" default-value="Your Slogan"/>
 <property name="role" default-value="Your Role"/>
 <property name="email" default-value="Your Email
Address"/>
 <property name="phone_number" default-value="Your Phone-
Number"/>
 <command action="save,display" perform-on="this"
embed="BusinessCard.wsp"/>
 <command action="edit" perform-on="this"
embed="BusinessCard.wsp"/>

 <command action="set" perform-on="security, security
settings, settings, security properties"
embed="StandardSecurityForm.wsp"/>
</weblet>

Weblet Server Pages

Weblets are actually scripted seperate from the weblet descriptor in a Weblet Server
Pages (WSP) file, which has the extension wsp. A WSP file consists of scripting control
code and HTML presentation code. WSP is based on Active Server Pages (ASP) and
Java Server Pages (JSP), and is a light-weight subset of both standards.

All WSP files begin with a language directive that states what language the script in the
WSP file is written in:

<%@ language="javascript" %>

This directive is inspired by the JSP specification. The following languages are currently
supported in WSP:

• Javascript/ECMAscript (language="javascript|ecmascript")
• WebL (language="webl ")
• Java

The preferred and default language for WSP pages is Javascript. All examples in this
section use Javascript.

The rest of the WSP file consists of scriptlets and HTML. A scriptlet is a block of code
between the tags <% and %> in the language defined in the language directive:

Example.wsp:

<%@ language="javascript" %>
<H1>Hello world!</H1>
<%
 var someVariable = "blah";
 function someFunction() {
 write(someVariable);
%>
<CENTER>Some more HTML</CENTER>

If a weblet descriptor existed that had the following:

<weblet>
 <command action="display" embed="Example.wsp">
</weblet>

Then when a user requested the weblet command display, Example.wsp would be
executed and the results would be returned as a string. The scriptlet block would execute
and its results would be embedded in Example.wsp's output:

<H1>Hello world!</H1>
blah
<CENTER>Some more HTML</CENTER>

While WSP files can be this simple, in general a WSP file is used to perform and present
a user's weblet command request. Several objects are exposed to the WSP scripting
language in the scripting language's native format to help proces the user's weblet
command request:

• Standard JSP objects
o request
o response
o servlet
o session
o input
o output
o parameters

• Special WSP objects
o weblet
o WebletCommand
o WebletManager
o naming

The standard JSP objects can be referenced exactly as one would in java. The following
would be legal references:

o servlet.getServletContext().getRealPath(myFilename)
o request.getRemoteUser()
o response.setHeader("Content-encoding","binary")

The servlet object corresponds to the Java servlet's this object. Since the same servlet is
shared by all WSP pages, servlet is actually a global object.

The request and response objects are the same as their corresponding counterparts in the
service method argument list. These objects are refreshed with each WSP page
invocation.

session is actually a shorthand for request.getSession(true). By its nature, this object is
static for the duration of the client's connection.

input is actually a shorthand for request.getInputStream(), while output is shorthand for
the string result that is returned by the execution of the WSP file.

The parameters object contains the collection of parameters passed to the WSP page
through the request's query string. Single-valued parameters are stored as scalars, multi-
valued parameters are stored as arrays.

An individual parameter (for instance, filename) can be referenced as
parameters.filename or as parameters["filename"].

Referencing non-existant parameter properties should not cause any errors. If a non-
existant parameter is referenced then the offending javascript statement is simply ignored.

WSP provides special objects to make it easy for WSP scripts to manipulate the weblet
descriptors that called them. The first is the WebletCommand object. This object
exposes all of the details concerning the weblet command that the user requested. It has
the following properties:

WebletCommand.action – the action requested by the user
WebletCommand.perform_on – the object on which the action was requested
WebletCommand.full_command – the full command (action + perform_on)
WebletCommand.weblet_name – the name of the weblet on which the command is
executed on
WebletCommand.current_user – a reference to a User object for the user that executed
the command
WebletCommand.current_container – a reference to the parent weblet container of the
weblet that the command was executed on
WebletCommand.current_site – a reference to the Site object that the target weblet is in
WebletCommand.current_area – a reference to the Area object that the target weblet is
in
WebletCommand.full_name – the full path-name of the target weblet

The weblet object provides access to the weblet that called the WSP file and information
about the weblet.
Using Javascript one can access everything within the weblet object using the Document
Object Model (DOM). The weblet object exposes all of the values of a weblet's
properties that were defined in the weblet descriptor:

<% write(weblet.property1);
 weblet.property2 = "hello world";
%>

Further, any of the attributes that were defined for these properties in the weblet
descriptor, such as draggable or inplace-editable, are accessible as well, using the
Document Object Model:

<%
weblet.property1.draggable
weblet.property2.inplace-editable
%>

All of the properties can be referenced as follows, using Javascript:

<%
weblet.all.tags("property");
%>

This returns an array of all the properties.

A weblet's standard-properties is referenced as follows:

weblet.standard_properties.property_name

where property_name is some standard property, such as the owner:

<%
weblet.standard_properties.owner = "Brad Neuberg";
%>

A different weblet command than the one currently executing in the WSP file can be
invoked on the weblet as follows:

<%
 weblet.embed("Full Command", WebletCommand, request,
response);
%>

where Full-Command is some weblet command like "display business card". If the
command does not exist no error is thrown and the embed() method simply returns.

WebletManager exposes methods for weblets to gain a context to the naming service, as
well as a method to embed other weblets.

The naming object exposes the root of the naming service so that operations may be
performed in the directory services.

It is recommended that WSP files not output <html>, <head>, or <body> tags, since
several WSP files could be chunked together by a weblet container and the existence of
multiple <html> or <head> tags in each of these chunked weblets could confuse
browsers.

Just as in Java Server Pages, the shortcut tag <%== someVariable.property %> exists to
print out a variable's current value. For example, to print out the value of the weblet
property organization in some weblet, one would do as follows:

<H1>Hello I am a member of <%== weblet.organization %></H1>

which if weblet.organization was set to "OpenPortal" would print out:

<H1>Hello I am a member of OpenPortal</H1>

Dynamic HTML Tags

OpenPortal provides some conveniance tags that can be used in WSP scripts to help
create Dynamic HTML interfaces. All of these tags are based on XML, and have the
namespace weblet attached to them. These tags help build the following functionality
into weblet user interfaces:

• Inplace-editing

In the future these tags and the DHTML subsystem will be extended to allow the creation
of extremely powerful user interfaces for weblets in a way that is transparent to both the
developer and cross-platform.

Inplace-Editing Tag

To add in-place editing to a property in a WSP file, place the tag <weblet:INPLACE-
EDIT> around the html which displays the property. For example, if one has a weblet
that has the property organization in it and wishes to make it inplace-editable, one would
surround it with the inplace-edit tag:

I am a member of <weblet:INPLACE-EDIT property-
name="organization"><%==weblet.organization%></weblet:
INPLACE-EDIT>

If the value of organization was "OpenPortal", then this would print out:

I am a member of OpenPortal

and when a user clicked on the word 'OpenPortal' the word would instantly turn into a
small edit field for the value of weblet.organization to be changed.

OpenPortal automatically inserts the correct javascript and information in a WSP file
when sent to the client if it contains <weblet:INPLACE-EDIT> tags.

Examples of Creating Weblets

The Simplest Weblet – Hello World

Let's start with the absolute simplest weblet, one that prints "Hello World" when it
receives the weblet command "display hello world". When the user clicks on the web
page below:

whose HTML looks like this (remember that weblet commands are case-insensitive:

-->Display Hello World<--

The following is displayed:

To make this weblet, a weblet descriptor .weblet file and a Weblet Server Pages .wsp file
need to be made.

HelloWorld.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world" embed="HelloWorld.wsp"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript">

<H1>Hello World!</H1>

The service-weblet attribute in HelloWorld.weblet establishes that this weblet is a service-
weblet, and that there will only be one copy of this weblet on the site. If anyone types in
the command -->display hello world<-- then this weblet will be called. The <command>
tag establishes that the "display hello world" command should invoke and run the WSP
file HelloWorld.wsp.

Notice that HelloWorld.wsp does not need to check what command called it.
HelloWorld.jsp could have been written as

<%@ language="javascript">

<% if (WebletCommand.full_command == "display hello world")
{ %>
<H1>Hello World!</H1>
<% } %>

This accomplishes the same thing as the previous version and is not necessary unless
desired. If we wanted to make a more complex version of Hello World that displayed
Goodbye World when the commands "display Goodbye World" or "Goodbye World" are
called, and displays "Hello World" when the commands "display Hello World" or "Hello
World" are called by the user, then we could do it as follows:

HelloWorld2.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye
world" embed="GoodbyeWorld.wsp"/>
</weblet>

When "display hello world" or "hello world" are called, HelloWorld.wsp is embedded:

HelloWorld.wsp:

<%@ language="javascript" %>
<H1>Hello World!</H1>

When "display goodbye world" or "goodbye world" are called, GoodbyeWorld.wsp is
embedded:

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World!</H1>

Dividing the commands into two seperate files is an easy, quick, and reusable way of
making the Weblet Server Pages, though they could be put into one file as follows:

HelloWorld2.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <command full-command="display hello world, hello world"
embed="World.wsp"/>

 <command full-command="display goodbye world, goodbye
world" embed="World.wsp"/>
</weblet>

World.wsp:

<%@ language="javascript" %>
<% if (WebletCommand.full_command == "display hello world"
|| WebletCommand.full_command == "hello world") { %>
<H1>Hello World!</H1>
<% }
 else if (WebletCommand.full_command ==
"display goodbye world" ||
WebletCommand.full_command == "goodbye world") { %>
<H1>Goodbye World!</H1>
<% } %>

We could add a property to this weblet that underlying Weblet Server Pages files could
use to format themselves as follows:

HelloWorld3.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message
goes here"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye
world" embed="GoodbyeWorld.wsp"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript" %>
<H1>Hello World! By the way, here's your
<%==weblet.message %></H1>

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World! By the way, here's your
<%==weblet.message %> </H1>

We could have an automatic edit form generated for this weblet by adding an edit
command to it:

HelloWorld4.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message
goes here"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye
world" embed="GoodbyeWorld.wsp"/>
 <command action="edit" perform-on="this"
embed="this.edit()"/>
</weblet>

An edit form will automatically be generated for a user to customize the property
message. Alternatively, we could make weblet.message be inplace-editable so that if the
user clicks right where weblet.message is printed out it will turn into a tiny edit field
where the value can be changed:

HelloWorld5.weblet:

<? xml version="1.0" ?>
<weblet service-weblet="true">
 <property name="message" default-value="some message
goes here" inplace-editable="true"/>
 <command full-command="display hello world, hello world"
embed="HelloWorld.wsp/>
 <command full-command="display goodbye world, goodbye
world" embed="GoodbyeWorld.wsp"/>
 <command action="edit" perform-on="this" embed="this.edit()"/>
</weblet>

HelloWorld.wsp:

<%@ language="javascript" %>
<H1>Hello World! By the way, here's your <weblet:INPLACE-EDIT
property-name="message"><%==weblet.message %></weblet:INPLACE-
EDIT></H1>

GoodbyeWorld.wsp:

<%@ language="javascript" %>
<H1>Goodbye World! By the way, here's your <weblet:INPLACE-EDIT
property-name="message"><%==weblet.message %></weblet:INPLACE-
EDIT></H1>

A Property Weblet - Business Card

Our next example weblet is a business card weblet. This is an example of a property
weblet.

This weblet will have the following properties:

• name
• organization
• address
• slogan
• role
• email
• phone-number

and the following commands:

• display
• edit
• save

This business card weblet will look as follows when given the display command:

Each of these properties will be in-place editable, so that when someone clicks on the
organization name – "BaseSystem, Inc.", an in-place DHTML edit form will instantly be
embedded where the value can be changed:

and if changed:

will instantly reflect this change:

When this weblet is given the edit command (by clicking on the Edit hyperlink above), it
will return the following form which can be used by those without Dynamic HTML
browsers:

The properties and commands for the business card weblet are defined in the following
weblet descriptor file:

Business Card.weblet:

<weblet draggable="true">
 <property name="organization" default-

value="Organization"/>
 <property name="address" default-
value="Address1
Address2
Address3
"
 inplace-input="<textarea rows=3
cols=30>"/>
 <property name="slogan" default-value="Slogan"/>
 <property name="name" default-value="Name"/>
 <property name="role" default-value="Role"/>
 <property name="email" default-value="Email"/>
 <property name="phone_number" default-value="Phone-
Number"/>
 <standard-property name="default_input" default-
value="<input type=text size=42 maxlength=80"/>
 <command action="save" perform-on="this"
embed="BusinessCardSave.wsp">
 <command action="display,view,save" perform-on="this"
embed="BusinessCardDisplay.wsp">
 <command action="edit" perform-on="this"
embed="BusinessCardEdit.wsp">
</weblet>

Notice that the HTML that defines the three commands for this weblet are in three
seperate files. Also notice that the save command is given twice:

These three files are:

BusinessCardSave.WSP:

<%@ language="javascript" %>
<!-- Save the weblet -->
<%
 if (parameters.organization != null)
 weblet.organization = parameters.organization;
 if (parameters.address != null)
 weblet.address = parameters.address;
 if (parameters.slogan != null)
 weblet.slogan = parameters.slogan;
 if (parameters.parameters != null)
 weblet.name = parameters.name;
 if (parameters.role != null)
 weblet.role = parameters.role;
 if (parameters.email != null)
 weblet.email = parameters.email;
 if (parameters.phone_number != null)
 weblet.phone_number = parameters.phone_number;
 naming.rebind(weblet.standard_property.name);

%>

Notice how a reference to the calling weblet is obtained in the WSP file by using the predefined standard
object weblet:

weblet.organization = parameters.organization;

Also notice how once the weblet's new values have been stored in the weblet it is saved
back into the directory service using the exposed naming object:

naming.rebind(weblet.standard_property.name);

BusinessCardDisplay.wsp:

<%@ language="javascript" %>
<!-- Display the weblet -->
 <table border="0" cellspacing="2" cellpadding="3"
width="206">
 <tr bgcolor="#EEEECC">
 <td><font face="Arial, Helvetica, sans-serif"
size="-1" color="#666633">Business
 Card Weblet</td>
 <td align="right" width="26">-
>Edit<-</td>
 </tr>
 </table>

 <table border="0" cellspacing="0" width="300">
 <tr bgcolor="#FFFF00">
 <td width="57%" height="34" valign="top"><font
size="5" face="Times New Roman, Times,
serif"><weblet:INPLACE-EDIT property-
name="organization"><%==weblet.organization%></weblet:
INPLACE-EDIT> </td>
 <td width="43%" height="34"> </td>
 </tr>
 <tr bgcolor="#FFFF00">
 <td width="57%"><weblet:INPLACE-EDIT
property-
name="address"><%==weblet.address%></weblet:INPLACE-
EDIT>
 </td>
 <td valign="bottom" width="43%"><i><font size="1"
face="Arial, Helvetica, sans-serif"><weblet:INPLACE-EDIT
property-name="slogan"><%==weblet.slogan%></weblet:INPLACE-
EDIT></i></td>
 </tr>
 <tr bgcolor="#0066FF">

 <td width="57%"></td>
 <td width="43%"></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%"><font
size="2"><weblet:INPLACE-EDIT property-
name="name"><%==weblet.name%></weblet:INPLACE-
EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%" height="24"></td>
 <td width="43%" height="24" valign="top"><font
color="#FFFFFF" size="1"><weblet:INPLACE-EDIT property-
name="role"><%==weblet.role%></weblet:INPLACE-
EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%" valign="top"><font color="#FFFFFF"
size="1">email: <weblet:INPLACE-EDIT property-
name="email"><%==weblet.email%></weblet:INPLACE-
EDIT></td>
 </tr>
 <tr bgcolor="#0066FF">
 <td width="57%"></td>
 <td width="43%" valign="top"><font color="#FFFFFF"
size="1">voice: <weblet:INPLACE-EDIT property-name="phone-
number">
<%==weblet.phone_number%></weblet:INPLACE-EDIT></td>
 </tr>
 </table>

BusinessCardEdit.wsp:

<!-- Edit the weblet -->
 <form method="post"
action="?<%==WebletCommand.toURLString()%>">
 <table border="0" cellspacing="2" cellpadding="3">
 <tr bgcolor="#EEEECC">
 <td colspan="3"><font face="Arial, Helvetica,
sans-serif" size="-1" color="#666633"><font
color="#333300">Business Card Weblet</td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Name:</td>

 <td> </td>
 <td><input type="text" name="name"
value="<%==weblet.name%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Organization:</td>
 <td> </td>
 <td><input type="text" name="organization"
value="<%==weblet.organization%>" size="42"
maxlength="80"><td> </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Address:</td>
 <td> </td>
 <td><input type="text" name="address"
value="<%==weblet.address%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Slogan:</td>
 <td> </td>
 <td><input type="text" name="slogan"
value="<%==weblet.slogan%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Role:</td>
 <td> </td>
 <td><input type="text" name="role"
value="<%==weblet.role%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Email:</td>
 <td> </td>
 <td><input type="text" name="email"
value="<%==weblet.email%>" size="42" maxlength="80"><td>
 </tr>
 <tr>
 <td><font face="Verdana, Arial, Helvetica, sans-
serif" size="-1">Phone-Number:</td>
 <td> </td>
 <td><input type="text" name="phone_number"
value="<%==weblet.phone_number%>" size="42"
maxlength="80"><td>
 </tr>

 <tr>
 <td> </td>
 <td> </td>
 <td align="right"><input type="submit"
value="Save"></td>
 </tr>
 </table>
 </form>

Wrapping An Existing Portal as a Weblet – eGroups

In this example a Group weblet is created. It is created by taking a portion of an existing
portal, named eGroups, and wrapping eGroups so that its functionality can be reused by
OpenPortal. eGroups is a portal that facilitates the creation of web-based groups. The
language WebL is used to manipulate the eGroups site.

The Group weblet has the following user interface when it receives the display command:

Every Group weblet has the following properties:

• group name
• group address
• group description
• group toolbar

The group toolbar property is interesting. It is inplace-editable, so that a user can click
right on it to change it's menu contents, and then hit save to have it instantly updated!

Every Group weblet has the following commands:

• display
• edit
• save
• start new group
• invite new members
• add group event
• add group poll
• login to your group

Here is the weblet descriptor that describes these properties and commands:

Group.weblet:

<? xml version=”1.0” ?>
<weblet draggable="true">
 <property name="group_name"/>
 <property name="group_address"/>
 <property name="group_description"/>
 <property name="group_toolbar“ inplace-editable="true"

 default-value="
 -->Start new group<--

 -->Invite new members<--
 -->Add Group Event<--
 -->Add Group Poll<--
 -->Login to Groups<--"
 input="<textarea rows=5 cols=30>"/>
 <command action=”start” perform-on=”new group”
embed=”Group.wsp”/>
 <command action=”invite” perform-on=”new members”
embed=”Group.wsp”/>
 <command action=”add” perform-on=”groups event”
embed=”Group.wsp”/>
 <command action=”add” perform-on=”groups poll”
embed=”Group.wsp”/>

 <command action=”login to” perform-on=”your group”
embed=”Group.wsp”/>
 <command action=”display” perform-on=”this”
embed=”Group.wsp”/>
 <command action="edit" perform-on="this"
embed="this.edit()"/>
 <command action="save" perform-on="this"
embed="this.save()"/>
</weblet>

All of the commands funnel into Group.wsp, which does the actual checking of which
command was requested:

Group.wsp:

<%@ language=”webl” %>

<!-- Define all functions -->
<% var startGroup = new fun()
 var page =
GetURL("http://www.egroups.com/listman", [.
method="display_startnewlist" .]);

 // manipulate HTML here
 end;

 var inviteMembers = new fun()
 var page =
GetURL("http://www.egroups.com/GroupMembersPage", [.
method="performAction",listName=weblet.group_name,selectedV
iew="all",newMemberName="",Button_InviteNewMember="Invite+n
ew+member".]);

 // manipulate HTML here
 end;

 var addEvent = new fun()
 var page = GetURL("http://www.egroups.com/cal", [.
md="a", listname=weblet.group_name .]);

 // manipulate HTML here
 end;

 var addPoll = new fun()
 var page = GetURL("http://www.egroups.com/vote",
[. md="a", listname=weblet.group_name .]);

 // manipulate HTML here
 end;

 var login = new fun()
 var page = GetURL("http://www.egroups.com");

 // manipulate HTML here
 end;
%>

<!-- Handle all commands -->
<!-- Start new group -->
<% if (WebletCommand.full_command = "start new group")
 startGroup();
 end;
%>

<!-- Invite new members -->
<% if (WebletCommand.full_command = "invite new members")
 inviteMembers();
 end;
%>
<!-- Add Group Event -->
<% if (WebletCommand.full_command = "add group event")
 addEvent();
 end;
%>
<!-- Add Group Poll -->
<% if (WebletCommand.full_command = "add group poll")
 addPoll();
 end;
%>

<!-- Login to your Group -->
<% if (WebletCommand.full_command = "login to your group")
 login();
 end;
%>

<!-- Display this-->
<% if (WebletCommand.full_command = "display this") %>
 <table border="0" cellspacing="2" cellpadding="3"
width="206">

 <tr bgcolor="#EEEECC">
 <td><font face="Arial, Helvetica, sans-serif"
size="-1" color="#666633">Group
 Weblet</td>
 <td align="right" width="26">-
>Edit<-</td>
 </tr>
 </table>
 <!-- simplified HTML -->
 .
 .
 .
 <td><%==weblet.group_toolbar%></td>
 .
 .
 .
 <td>Group Name:</td>
 <td><%==weblet.group_name%> </td>
 .
 .
 .
 <td>Group Address:</td>
 <td><%==weblet.group_address%> </td>
 .
 .
 .
 <td>Group Description:</td>
 <td><%==weblet.group_description%> </td>
<% end; %>

Note that not all of the WebL script to manipulate the eGroups HTML is in the functions above.

